Sant Gadge Baba Amravati

University Amravati

NEPv23 M.Sc.

Bioinformatics

Programme

Objective:

- 1. The program aims to utilize and understand biological databases to gather, store, retrieve, manage, analyze and integrate biological data for generating new knowledge.
- 2. The program aims to impart extensive understanding and learning of theoretical concepts in Life Sciences.
- 3. Each semester includes at least one core course in life sciences along with computational biology in each semester.
- 4. Basic practical methodology is incorporated as practical sessions in Laboratory courses in each semester.
- 5. Developing and implementing computational logic, learning programming languages, algorithms and software for progressive life science solutions.
- 6. Better understanding of dynamic biological processes and their understanding at molecular level enabled through and correlated using internet and Bioinformatics.
- 7. To develop skilled bioinformatics professionals who have life science background and who are simultaneously proficient in pharmacogenomics, Drug delivery System and Parasitology.
- 8. To introduce new age concepts of big data in the 'omics' era and their analysis.

Programme Specific Outcomes (PSO):

- 1. Students undertaking the course shall have fundamental knowledge in theoretical Biochemistry, Cell Biology, Molecular Biology, genomic, computational biology and Genetics.
- 2. They will possess basic biochemistry and computational biology practical skills and its application in research and industry.
- 3. Students undertaking the course shall have fundamental knowledge in theoretical Cell Biology, Biochemistry, Mathematics, Statistics, Parasitology and database management, possess basic practical skills in these fields and its application in research and industry.
- 4. Students will learn on various aspects in Biotechnology and have hands on skills in Molecular Techniques.
- 5. Students will learn basic mathematical and statistical concepts and learn to apply them in aiding life science research and analysis.
- 6. As beginners the students will learn to use a computer, internet, scope and applications of bioinformatics.
- 7. Students will later learn to use the vast array of biological databases and their resources. Knowledge in life sciences would be the key and tools, methodologies and softwares used in bioinformatics will give them a comprehensive edge in data analysis.

- 8. Differential skills on basis of bioinformatics and computational biology proficiency would be later validated through academic supervision and systematically guided according to their skill.
- 9. Students as a part of curriculum will learn many programming languages from basic C, HTML etc. to PERL, PYTHON, R Programming, etc.
- 10. Students will be able to use free software, operating systems, work in command line environments and extensively work in databases, their creation and management. This will be ideal for job opportunities for them in IT enabled services as well.
- 11. Drug discovery strategies from life science point of view and the concerted computational approach are learned, evaluated and practiced through experimental sessions and thoroughly learned.
- 12. Students learn Genomics and Proteomics as primary subjects in their quest for biological repositories of information where in they will find their data which they will later analyze using next generation techniques for prediction of function and annotation.
- 13. Students also learn basics of data mining, machine learning, and artificial neural networks as a part of curriculum in bioinformatics which can be considered as a stepping stone in comprehending industry demands and hype surrounding big data analysis.

Employability Skills:

After completion of Programme in Bioinformatics the student/s would be placed in

- 1. Post-Doctoral fellow.
- 2. Data Scientist
- 3. Drug delivery system analyst
- 4. Pharmacogenomics industry
- 5. As a Computational Biologist.
- 6. Biotechnology industry as a biomolecular engineer
- 7. Senior Software Engineer
- 8. Bioinformatics Engineer
- 9. Bioinformatics Analyst
- 10. Parasitic informatician
- 11. As an academician
- 12. As a computer programmer.
- 13. As expert in genomics and proteomics industries.
- 14. As a primer designer.

Scheme of Teaching, Learning & Examination leading to Two Years PG Degree Master of Science in the Programme Bioinformatics following Three Years UG Programme wef 2023-24 Two Years- Four Semesters Master's Degree Programme- NEPv23 with Exit and Entry Option (M.Sc. Part I) Semester I

S. N.	Subject	Type of Course	Subject Code		8 8			Duration Of Exam											
							H				Maximum Marks				Minimum Passing				
					ching Per W	Period eek	l		Credits			The	ory	Pra	ctical	Total Marks			
				L	Т	Р	Total	L/T	Practical	Total		Theory Internal	Theory +MCQ External	Internal	External		Marks Internal	Marks External	Grade
0	*Pre-Requisite Course(s) if applicable/MOOC/Internship/Field Work cumulatively If students wish to opt Minor Course of UG as Major for PG, balance 12 Credits Course will have to be completed (As and when applicable)	Th-Prq		0	0	0	0	earn (1). (DS (2).7 earn(as M	itional Cred ned = (1) mi Credits fron GC Courses i (minus) The Credits ed from the inor at UG,	nus(2) 1 Major in UG already Course , now to	2	15	35			50	06	14	Р
1	Research Methodology and IPR	Th-Major	BINF 01	4			4	4		4	3	30	70			100	12	28	Р
2	DSC-I.1 Introduction to Bioinformatics	Th-Major	BINF 101	4			4	4		4	3	30	70			100	12	28	Р
3	DSC-II.1 Mathematics and Biostatistics	Th-Major	BINF 102	4			4	4		4	3	30	70			100	12	28	Р
	DSC-III.1 Cell and Molecular Biology	Th-Major	BINF 103	3			3	3		3	3	30	70			100	12	28	Р
4	DSE-I/MOOC (Elective Options) Computer for Biologists, Database Management	Th-Major Elective	BINF 104	. 3			3	3		3	3	30	70			100	12	28	Р
	<u> </u>																	m Passing arks	Grade
5	DSC-I.1 Lab	Pr-Major				2	2		1	1	3			25	25	50		25	Р
6	DSC-II.1 Lab	Pr-Major				2	2		1	1	3			25	25	50	2	25	Р
6	DSC-III.1 Lab	Pr-Major				2	2		1	1	3			25	25	50		25	Р
7	DSE-I Laboratory/MOOC Lab	Pr-Major Elective				2	2		1	1	3			25	25	50		25	Р
8	# On Job Training, Internship/ Apprenticeship; Field projects Related to Major @ during vacations cumulatively	Related to DSC		120 H cumulative vacations of and Sem	ely dui f Seme	ster I				4*									Р*

9	Co-curricular Courses: Health and wellness, Yoga Education, Sports and Fitness, Cultural Activities, NSS/NCC, Fine/Applied/Visual/Performing Arts During Semester I, II, III and IV	Generic Optional	90 Hours Cumulatively From Sem I to Sem IV	7								
	TOTAL					22			600	0+50*		

L: Lecture, T: Tutorial, P: Practical/Practicum

Pre-requisite Course mandatory if applicable: Prq, Theory : Th, Practical/Practicum: Pr, Faculty Specific Core: FSC, Discipline Specific Core: DSC, Discipline Specific Elective: DSE, Laboratory: Lab, OJT: On Job Training: Internship/ Apprenticeship; Field projects: FP; RM: Research

Methodology; Research Project: RP, Co-curricular Courses: CC

Note : # On Job Training, Internship/ Apprenticeship; Field projects Related to Major (During vacations of Semester I and Semester II) for duration of 120 hours mandatory to all the students, to be completed during vacations of Semester I and/or II. This will carry 4 Credits for learning of 120 hours. Its credits and grades will be reflected in Semester II credit grade report.

Note: Co-curricular Courses: In addition to the above, CC also include but not limited to Academic activities like paper presentations in conferences, Aavishkar, start-ups, Hackathon, Quiz competitions, Article published, Participation in Summer school/ Winter School / Short term course, Scientific Surveys, Societal Surveys, Field Visits, Study tours, Industrial Visits, online/offline Courses on Yoga (Yoga for IQ development, Yoga for Ego development, Yoga for Anger Management, Yoga for Eyesight Improvement, Yoga for Physical Stamina, Yoga for Stress Management, etc.). These can be completed cumulatively during Semester I, II, III and IV. Its credits and grades will be reflected in semester IV credit grade report.

Part B		
Syllabus Prescribed for 2023	Year	PG. Programme
Programme		M.Sc. Bioinformatics
Semester I		
Code of the Course Subject	Title of the Course/ Subject	No. of periods/ week
BINF-01 Resea	rch Methodology, IPR and Bi	ioethics 04
Cos :		

- 1. Identify an appropriate research problem in their interesting domain.
- 2. Understand ethical issues Understand the Preparation of a research project thesis report.
- 3. Understand the Preparation of a research project thesis report
- 4. Understand the law of patent and copyrights.
- 5. Understand the Adequate knowledge on IPR

5. Understand the Adequ	
Unit I : (Research	Research and Technical Writing: What is research? The
Methodology)	process of research – various types of research – research
	methodology – Hypothesis – research writing – basic
	principles;
Unit II : (Research	Publication process – peer review - Journal impact factors –
Methodology)	popular journals in Computational Biology &
	Bioinformatics (brief overview of their scope),
	Professional Societies in the field – their role in research and
	knowledge dissemination, Open Access Publications,
	Concept of ethics – its application in Scientific Research and
	Academics, Solving ethical conflicts, moral reasoning &
	ethical theories, responsibilities and rights.
Unit III : (Intellectual	General principles of Intellectual property rights (IPR);
Property Rights)	Patents and methods; application of patents; Legal
	implications; International treaties for protection of IP -
	Bern, Paris, TRIPS, WIPO treaties, Biodiversity convention,
	etc
Unit IV : (Intellectual	Nature of Intellectual Property: Patents, Designs,
Property Rights)	Trademarks and Copyright. Process of Patenting and
	Development: technological research, innovation, patenting,
	development; International cooperation on Intellectual
	Property, Procedure for grants of patents, Patenting under
	PCT; Scope of Patent Rights; Licensing and transfer of
	technology. Patent information and databases, Geographical
	Indications
Unit V : (Bioethics)	The legal and socioeconomic impacts of biotechnology;
	public education of the process of the processes of
	biotechnology involved in generating new forms of life for
	informed decision making; Biosafety regulation and national

			1	• , ,	• 1	• 1 1•		• 1 1
			and			•		guidelines;
			-			approval; leve		
Unit V	Init VI: (Bioethics) Environmental aspects of biotechnology applications; Us						cations; Use	
			of g	genetically	modifi	ied organisms	and their	r release in
			envi	ronment; S	pecial	procedures fo	r rDNA-ba	ased product
			prod	luction; Bi	odivers	sity and farm	ners rights	; Beneficial
						opment of res		
						ation of direct		
				- ·		e, etc; Biorem	•	
			5	Suggested I	Readin	g:		
	1.	Sasson, A. (19	88) "B	iotechnolo	gies an	d Developmen	t", UNESC	CO
		Publications			-	-		
	2.	Sasson, A. (19	93) "B	iotechnolog	gies in	developing co	untries pres	sent and
		future"; UNES			C	1 0	1	
	3.	Singh, K. "Inte			Rights	on Biotechnol	logy"; BCI	L, New
		Delhi		1 2	U			,
	4.	Halbert, (2007) "Res	isting Intell	ectual	Property" Tay	lor & Franc	cis Ltd
		Ramappa T., "	·	•		1		
Learn	ing Ou	tcome:						
1.	1. Understand the research problem and research process.							
	2. Understand research ethics .							
	3. Prepare a well-structured research paper and scientific presentations							
	-					-		
-	4. Explore on various IPR components and process of filing.							

5. Understand the adequate knowledge on patent and rights.

Part B		
Syllabus Prescribed for 2023	Year	PG. Programme
Programme		M.Sc. Bioinformatics
Semester I		
Code of the Course Subject	Title of the Course/ Subject	No. of periods/
week		
DSE I.1	Introduction to Bioinformat	ics 03
Cos :		
6. Demonstrate mastery	of the core concepts of	Bioinformatics, including
computational biology	, database design and implement	ntation, and probability and
statistics.		
7. The student/s would l	be able to acquire ability to ap	ply skills in a professional
environment via an ind	ustrial or academic internship in	Bioinformatics.
8. Be able to effectively h	andle the computers and utilized	for computational biology
Unit-I : (Introduction to	1	6,
Bioinformatics)	Different definitions of Bioinfo	ormatics, Bioinformatics – A

	multidizzinlinger Annroach History of Disinformation			
	multidisciplinary Approach, History of Bioinformatics, Emergence of bioinformatics as a separate discipline;			
	Application of Bioinformatics, Scope of Bioinformatics,			
	some of the biological problems that require computational			
	methods for their solution; Role of internet and www in			
	bioinformatics.			
Unit-II: (Biological Data	The form of biological information; DNA sequencing			
Acquisition)	methods – basic DNA sequencing, automated DNA			
requisition	sequencing, shotgun DNA sequencing; DNA sequencing by			
	capillary array and electrophoresis; Types of DNA			
	sequences – genomic DNA, cDNA, recombinant DNA,			
	Expressed sequence tags (ESTs), Genomic survey			
	sequences (GSSs); RNA sequencing methods; Types of			
	RNA; Protein structure determination methods.			
	Biological databases indexing and specification of search			
Unit-III: (Databases:	terms; Common sequencing file formats – NBRF/ PIR,			
Format and Annotation)	FASTA, FASTQ; Files for multiple sequence alignment -			
,	multiple sequence format (MSF), ALN format; Files for			
	structural data – PDB format and cn3D files; Annotated			
	sequence databases – primary sequence databases			
	(GenBank-NCBI, the nucleotide sequence database-EMBL,			
	DNA sequence databank of Japan-DDBJ; organisms			
	specific databases (EcoGene, SGD, MatDB, TAIR, FlyBase,			
	OMIM, etc.); Protein sequence and structure databases			
	(PDB, SWISS-Uniprot PROT and TrEMBL).			
Unit-IV: (Data: Access,	Data access – standard search engines, Data retrieval tools			
Retrieval and Submission)	- Entrez, DBGET and SRS (sequence retrieval systems),			
	FTP, API GETWAY; Submission of new and revised data			
	using BankIt & Sequin.			
Unit-V:(Sequence	Sequence homology as product of molecular evolution;			
Similarity Searches)	Sequence similarity searches methods (Pairwise and			
	Multiple Sequence alignment); Significance of sequence			
	alignment; Sequence alignment – global, & local and free-			
	space; Alignment scores and gap penalties; Measurement of			
Unit- VI Python	sequence similarity; Similarity and homology Basic data types – Strings, Lists, Tuples – Lists and Tuples			
	- Strings and Unicode strings.			
	Buffers – Dictionaries – Numbers – Type conversions –			
	Files.			
	Indentation – Line structure – Block structure – Special			
	objects			
	Suggested Reading:			
6. Baxevanis, A.I	D. and Francis Ouellellette, B.F. (1998) "Bioinformatics- a			
practical guide"				
1 0	7. Mount, D. (2004) "Bioinformatics: Sequence and Genome Analysis"; Colo			
Spring Harbor Laboratory Press, New York. (ISBN 0-87969-712-1)				
8. Sharma, V. Munjal, A. and Shankar, A. (2008) "A text book				
Bioinformatics	' first edition, Rastogi Publication, Meerut – India.			
Learning Outo				

To get introduced to the basic concepts of Bioinformatics and its significance in Biological data analysis.
 Describe the history, scope and importance of Bioinformatics and role of internet in Bioinformatics.
 Explain about the methods to characterize and manage the different types of Biological data.
 Classify different types of Biological Databases and file formats.
 Introduction to the basics of sequence alignment and analysis.
 Overview about biological macromolecular structures determination methods.

Part B								
Syllabus Prescril	bed for 2023 Year PG	PG. Programme						
Programme	M.S	M.Sc. Bioinformatics						
Semester I	Semester I							
Code of the Cour	rse Subject Title of the Course/ Subject	No. of periods/						
week								
DSC II.1	Mathematics and Biostatistics	04						
mathematical algo applications in bio	Cos :The main objective of this course is to provide students with the foundations of mathematical algorithms, probabilistic and statistical analysis mostly used in varied applications in biological sciences and science like disease modeling, metabolomics, genomics and computer networks etc.							
Unit-I : (Mathematics)	Calculus: Limits, Complete Differentials, Partial differentials of functions with one variable and multiple variables. Integration: Definite and non-definite integral; Series, Logarithms Mathematical Techniques Ordinary differential equations (first order), Partial differential equations- example from biology. Special functions - Bessel, Legendre.							
Unit-II : (Mathematics)	 2D Coordinate geometry: Equation of a line, of hyperbola 3D Geometry: Equation of sphere, cone Trigor Cos, Tan, Co~ Series expansion of these. Fun functions Vector -Addition, subtraction, dot, croc divergence, curl of a vector, equation of normal Matrix algebra: Addition, subtraction, multiplic and conjugate of matrix etc. Logic: Boolean logic Addition, subtraction, mu using binary, octal and hexadecimal systems Fur Fourier transform, Laplace Transform & other s 	nometric functions: Sin, ctions and other related oss, scalar triple product, ation, transpose inverse, ltiplication and division ndamentals of Set theory						
Unit-III : (Biostatistics)	Scope of biostatistics, definition, data collection graphs, charts (scale diagram, histogram, freque	· 1						

	curve, logarithmic curves). Sampling & selection bias, probability sampling, random sampling, sampling designs, descriptive statistics: Measures of central tendency (arithmetic mean, geometric mean, harmonic mean, median, mode); Partition value, Measures of dispersion (range, quartile deviation, mean deviation and standard deviation), coefficient of variation.					
Unit-IV :	Correlation and regression analysis (simple and linear) curve fitting					
(Biostatistics)	(linear, non-linear and exponential), Axioms, models, conditional probability, Bayes rule, Genetic Applications of Probability, Hardy - Weinberg law, Wahlund's Principle, Forensic probability determination, Likelihood of paternity, Estimation of probabilities for multi- locus/multi-allele finger print systems. Discrete probability distributions - Binomial, Poisson, geometric – derivations, Central limit theorem. Continuous probability distribution– normal, exponential, gamma distributions, beta and Weibull distributions, T & F distributions.					
Unit-V :	Estimation theory and testing of hypothesis, point estimation, interval					
(Biostatistics)	estimation, sample size determination, simultaneous confidence intervals, parametric tests [t-test, F-test, Chi Squared test for i) goodness of fit, ii) independence of distributes]. Analysis of variance (one- way and two-way classifications). Case studies of statistical designs of biological experiments (CRD, RBD, LSD).					
Unit- VI:	Data Input and Output. Data manipulation commands. Date functions.					
(Biostatics)	Frequencies, descriptive statistics, crosstabulations. Statistical analysis:					
	independent samples 't' test, paired 't' test, ANOVA, chi square, Fisher's exact					
	test, McNemar chi-square test, correlation and regression. Non-parametric methods: Mann Whitney U test, Wilcoxon Signed rank test, Spearman's correlation					
	Suggested Reading:					
1. Animesh k	K. Datta (2007) "Basic Biostatistics and it's application" First Edition,					
	al Book Agency, Ltd, Kolkata.					
2. Batschelet Springer-	E. (1992), "Introduction to Mathematics for Life Sciences", 3rd Edition, Verlag					
	d D. quading. Pure Mathematics (Advance level Mathematics), Vol. 1, 2, ge University Press, 2002.					
	, S. and Manicavachaagam Pillai, T.S. (1993) "Calculus, Vol. I and II"; han Printers and Publishers.					
	002), "Pure Mathematics (Advance level Mathematics)", Vol. 1, 2, 3 e University Press					
9	d Parihar (2007) "Biostatistics and Biometery" First Edition, Student					
	o P. S.S., Jesudian G. & Richard J. (1987), "An Introduction to					
Biostatistic	cs", 2nd edition, Prestographik, Vellore, India.					
8. Warren, J; 1st edition	Gregory, E; Grant, R (2004), "Statistical Methods in Bioinformatics", , Springer.					
	1984) "Bio Statistical Methods", Prentice Hall, International Edition.					
Learning	Outcome:					
0	 Learning Outcome: Recognize the importance and value of mathematical and statistical thinking, training, and approach to problem solving, on a diverse variety 					
	of disciplines;					

2.	Be familiar with a variety of examples where mathematics or statistics
	helps accurately explain abstract or physical phenomena;
3.	Recognize and appreciate the connections between theory and
	applications;
4.	Be able to independently read mathematical and statistical literature of
	various types, including survey articles, scholarly books, and online
	sources; and
5.	Be life-long learners who are able to independently expand their
	mathematical or statistical expertise when needed, or for interest's sake.

Part B				
Syllabus Prescribed for 2023	Year	PG. Programme		
Programme	Ι	M.Sc. Bioinformatics		
Semester I				
Code of the Course Subject	Title of the Course/ Subject	No. of periods/		
week	J	1		
DSC III.1	Cell and Molecular Biology	03		
Cos :	Con and Morecular Drotogy			
1. To provide comprehen DNA model to the cou				
-	erstanding of key events of molec eplication, Transcription and Tran	•••••••••••••••••••••••••••••••••••••••		
	nowledge about cell cycle regulati nation of structural organization co			
e .	sive understanding regarding DN.	A Repair Mechanisms in		
Unit-I: (Cell Biology)	Architecture of prokaryotic and of animal and plant cell, cell orga and plasma membrane, Cell cyc cell cycle in eukaryotes, Cell div Types of cells and its functions.	nelles, structure of cell wall le, Molecular mechanics of		
Unit-II : (Cell Biology)	Structure of Cytolplasm, Nucleu Golgi bodies, Lysosomes. Peroxisomes, Chloroplast and integration, Cell locomotion (A Components of blood	Endoplasmic Reticulum, Vacuoles, Cell to cell		
Unit-III : (Cell Biology)	Cell process and mechanics, nucleolus, Nuclear pore complex mechanism through NCP. organization of chromosome, model, DNA binding protein int	x (NCP), Import and export Chromosome- Structural chromatids, nucleosome		

Biology) Unit-V: Biology)	Molecular (Molecular	Concept of gene Central dogma, updated central dogma, molecular structure of nucleic acids – structure & forms of DNA & RNA, Replication: structure & function of DNA polymerases, replication in prokaryotes and eukaryotes, replication of chromatin. Transcription - components of transcription machinery, RNA polymerases, processing of RNA. Transcription in prokaryotes & eukaryotes, genetic code, Translation – mechanism, post-translational modification Gene Regulation in Eukaryotes- Transcription level control, Processing level control, Translational level control- UTR, Splicing, Silencing, Chromatic remodeling.			
Unit-VI: Biology)	(Molecular	Gene regulation in prokaryotes – Operon concept, Lactose, Histidine and Tryptophan operon, Gene regulation in			
Diology)		eukaryotes – Transcriptional level, translational level			
		control.			
		Suggested Reading:			
		nson, A., Lewis, J., Raff, M., Roberts, K and Walter,			
		lecular Cell Biology of the Cell", Fourth Edition, Garland			
		and Francis Group, USA. d De Robertis (2002) "Cell and Molecular Biology", Saunders			
	College, Philad	· · · · · · · · · · · · · · · · · · ·			
	-	"Cell and Molecular Biology: Concepts and Experiments";			
		Wiley Publishing Co. USA			
	4. Krieger, M. (20 and Co., New Y	03) "Molecular Cell Biology"; Fifth Edition, W.H. Freeman York.			
	5. Lewin, B. (20 International.	004) "Genes VIII"; Eighth edition, Pearson Education			
	C.A., Berk, A.	ott, M.P., Matsudaira, P., Darnell, J., Zipursky, L., Kaiser, (2003) "Molecular Biology of the Cell" Fifth Edition, W. H. ompany, England.			
	7. Bruce Alberts, A	Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, r. (2002) Molecular Biology of the Cell, 4th edition,: Garland			
	8. Metzler David	E. (2001) Biochemistry: The chemical Reactions of Living &2, Academic Press California.			
		Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H.			
	Ploegh, and P. I	Matsudaira, (2007) Molecular Cell Biology, Sixth Edition W.			
		l Company, New York, , ISBN-13: 978-0-716-77601-7			
	Learning Outc				
1.	-	oppreciate the diversity of life as it evolved over time by			
2.	-	on, selection and genetic change. mental structural units define the function of all living things.			
3.		owth, development, and behavior of organisms are activated			
		ion of genetic information in context.			
4.		ological systems grow and change by processes based upon			
		ation pathways and are governed by the laws of physics.			
5.		g systems are interconnected and interacting across scales of			
	space and time.				

- 6. Design a scientific process and employ the scientific method, demonstrating that biology is evidence based and grounded in the formal practices of observation, experimentation, and hypothesis testing.
- 7. Execute quantitative analysis to interpret biological data.
- 8. Construct and utilize predictive models to study and describe complex biological systems.
- 9. Apply concepts from other sciences in order to interpret biological phenomena.
- 10. Communicate biological concepts and understanding to members of a diverse scientific community as well as to the general public.
- 11. Identify social and historical dimensions of biological investigation.

ELECTIVE OPTION FOR NEP-20

Part B			
Syllabus Prescribed for 2023 Year			PG. Programme
Programme]	M.Sc. Bioinformatics
Semester I			
Code of the Cour	se Subject	Title of the Course/ Subject	No. of periods/
week	9	J	ľ
DSE I		Computer for Biologists	03
problem th 2. Student we which will	at can be sol ould be able be formalize n learn about	ow to convert a biological que ved using computers. to read and understand solutions ed as a series of tasks (an algorith general approaches for solving c ucture of a computer, char	to computational problems, m). computational problems.
(Introduction to Computer)	classification and Output and softwar	on of computers, Storage device devices, Operating system – win re, Application software, Windo Background screensaver, Custo	s, Types of memory, Input dows, linux, System drivers ow – Introduction, features,
Unit-II: (Introduction to MS-Office)	MS-Word: formatting, mail merge PowerPoint presentation presentation images, pre Excel, feat	Introduction to word, features Auto correct, spell check, gramme, print preview, printing of door Introduction to power point, n, adding slides and text, E n, text effect, animation, mod paring to deliver a presentation. ures, creating and formatting thematical formulas and function	nar, table, tabs, indentation, cument, hyperlink. MS- features, Creation of new Editing slide text, saving ifying objects and adding MS- Excel: Introduction to worksheet, Inserting data,

			
Unit-III:	Introduction to Internet, Type of Internet connection: Direct, dial-up,		
(Introduction to	protocol: TCP/IP, FTP, HTTP, Domain name, electronic mail address,		
Internet and	WWW, Search engine, Browser: Internet explorer, Mozilla, Google		
Networking)	chrome. Networking: Needs and objectives, LAN- Introduction,		
	classification, topology. Topology – Bus, Tree, Ring, Star, Hybrid,		
	WAN, MAN.		
Unit-IV:	Algorithms, flow-charts, programming languages, compilation, linking		
(Introduction to	and loading, testing and debugging, documentation, Introduction to C		
Ċ	programming, C variable, constant, and operators, data types, arithmetic		
programming)	operators, logical operators.		
1 8 8 8/			
Unit-V:	Condition: if, if else, while, do while, switch, Nested condition, Looping:		
(Introduction to	for, while, do while, nested loop. Introduction to Array, Array		
Ċ	initialization, bound checking, passing array element to a function,		
programming)	initializing a 2-dimensional array, sorting; Introduction to File Handling		
	: Opening a file, Closing a file, Reading and Writing into a file,		
	Appending to a file.		
Unit-VI:	Inheritance: Concept of inheritance – base class and derived class – overriding		
(Introduction to	of member functions – abstract class – public and private inheritance – Levels		
Ċ	of inheritance and multiple inheritance – inheritance and graphic shapes –		
programming)	virtual function and friend function.		
1 8 8/			
	Suggested Reading:		
1. Allen K. R	. (2003) "Window 2000 complete" BPB publication, India		
	wamy S. (2006) "Programming in ANSI C" Tata Mcgraw Hill		
3. Kanetkar Y	7. (2008) "Let us C" BPB publication, India		
4. Rajaraman	V. (2006) "Fundamental of Computers"		
5. Sharma S ((2006) "Fundamental of Computer" BPB publication, India		
Learning O	utcome:		
By the end of the course students will be able to			
	1. Understand different components of system software and Hardware.		
2. Understand intermediate code generation in context of language designing.			
3. Recognize operating system functions such as memory management as			
pertaining to run time storage management			
4. Describe the general architecture of computers.			
5. Describe process management, scheduling and synchronizations.			
6. Une	6. Understand and analyze theory and implementation of processes, memory		
	nagement, physical and virtual memory, scheduling, file management and		
	urity.		

Syllabus Prescribed for 2023 Programme: M. Sc. Bioinform		PG Programme	
Semester I Code of the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu	(No. of Periods/Week)	
-Practical – I	m/hands-on/Activity) Practical based on DSC I.1&II.1	04	

COs:

- 1. Adapt basic knowledge on various techniques and areas of applications in bioinformatics.
- 2. Analyze common problem in bioinformatics, alignment techniques, ethical issues, publicdata sources, and evolutionary modelling.
- 3. Discover the practical use of tools for specific bioinformatic areas.
- 4. Analyze cell structure and its functions
- 5. Illustrate the structure and functions of biomolecules

Mathematics and Biostatistics

1.	Calculation of measures of central tendency- Arithmetic mean, median and mode.
2.	Computation of partition values - Quartiles, Deciles and percentiles.
3.	Geometric mean and harmonic mean.
4.	Measure of dispersion- Range, Quartile deviation and mean deviation.
5.	Standard deviation and coefficient of variation.
6.	Calculation of coefficient of correlation.
7.	Computation of rank correlation coefficient.
8.	Fitting of straight line.
9.	Line of regression and regression coefficient.
10.	Fitting of Binomial distribution.
11.	Fitting of Normal distribution.
12.	Fitting of Poisson distribution.

Mathematics and Biostatistics:

Distributions: Fitting of binomial, Poisson, Normal, negative binomial, hypergeometric, lognormal distributions. Statistical inference: Critical regions and power curves concerning testing of hypothesis on the parameters of binomial and normal distributions (one and two sided), test for correlation coefficient, test for trends of proportion, multiple comparison test, chi-square test of independence and goodness of fit, test for homogeneity, fisher's exact test, Sequential Probability ratio tests for parameters of binomial, poisson and exponential distributions.

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I (Bioinformatics), SEMESTER – I (NEP-20)

PRACTICAL I: Introduction to Bioinformatics and Mathematics and Statistics

PRACTICAL SCHEDULE

Time: 6 hrs.	Marks - 50+50=100
Q.1. Major experiment based on Bioinformatics	15
Q.2. Minor experiment based on Bioinformatics	10
Q.3. Major experiment based on Statics.	15
Q.4. Minor experiment based on Bioinformatics.	10
Practical Internal	
Q.8. Record/ Assignments	20
Q.9.Viva Voce	20
Q.10. Attendance,	10

Syllabus Prescribed for 2023 Year Programme: M. Sc. Bioinformatics **PG Programme**

Semester I Code of the	Title of the Course/Subject	(No. of Periods/Week)
Course/Subject		

	(Laboratory/Practical/practicu	
	m/hands-on/Activity)	
-Practical – II	Practical based on DSC III.1	02

Cell and Molecular Biology

13.	To study morphology of Bacteria by Gram staining		
14.	To study morphology of Fungi and Yeast		
15.	Preparation of pure culture by stick plate method		
16.	Estimation of protein and carbohydrates		
17.	Restriction digestion of plant genomics DNA		
18.	Isolation & Purification of genomic DNA from plants		
19.	Isolation of DNA fragment from Agarose gel		
20.	Agarose gel electrophoresis of chromosomal & plasmid DNA		
21.	Estimation of DNA		
22.	Estimation of RNA		
23.	Paper Chromatography		
24.	Demonstration of some biological Instruments		
25.	Study of some chromosomal stages during mitosis.		
	Learning Outcome:		
	1. Apply knowledge of bioinformatics in a practical project.		
	2. Develop the ability for critical assessment of scientific research publications in		
	bioinformatics.		
	3. Build an understanding of the research process in general, such as research methods,		
	scientific writing, and research ethics.		
	4. Evaluate the main databases at the NCBI and EBI resources		

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- I (NEP-20) Practical II Cell and Molecular Biology

Time 6hrs	Marks-25+25=50
Q.1: Major experiment on Molecular Biology	20 Marks
Q.2: Minor Experiment on Cell Biology	05 Marks
Practical Internal Q.3: Viva-Voce Q.4: Practical Record, Attendance and Assignments	10 15

* List of Practical/Laboratory Experiments/Activities etc.

Sant Gadge Baba Amravati University, Amravati

Syllabus Prescribed for 2022 Year Programme: M. Sc. Bioinformatics PG Programme

Semest Code o	er 1 f the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu m/hands-on/Activity)	(No. of Periods/Week)
Practic	al II	Practical based on DSE-I	06
COs:			
1.	To get exposed to com	putational methods, tools and algor	rithms employed for Biological
	Data Interpretation		
2.	Explain about the conc pairwise alignment	ept of pairwise sequence alignmen	t , algorithms and tools for
3.	Describe about Multiple Sequence Alignment, its significance, algorithms and tools used for MSA		
4.	Describe about the var	ous techniques, algorithms and too	ls used for Phylogenetic Analysis
5.		computational methods and tools u	
6.	Explain about various	techniques used in genomics and p	roteomics

6. Explain about various techniques used in genomics and proteomics

* List of Practical/Laboratory Experiments/Activities etc.

	DOS Commands - Internal Commands: Viewing a directory, Changing Directory, Renaming a Directory
	- File operations: Creating files, removing a file, renaming files, viewing a file - External commands:
1	Copying a disk, Comparing disks.
	Overview of different versions of Windows - Working with Windows - Desktop Basic Layout, Icons,
	Opening Windows, Window Characteristics, Window Controls, Resize Windows, Arrange Windows,
2	Taskbar.
3	Working with Programs: Basic Program Layout, WordPad Program, Scrolling in Documents, Moving Insertion Point, Delete & Insert Key, Selecting Text, Cut, Copy & Paste, Working with Multiple Programs.
5	Files & Folders: Organization, View Folder Structure, Working with Folders, Search for Files,
4	Organizing Workspace - Personal Desktop, Shortcuts, Start Menu, Start Properties, Display as Menu, Taskbar, Quick Launch.
	Windows Properties - Navigating Control Panel, Changing Theme, Desktop Settings, Screen Saver
5	Settings, Appearance Settings, Display Settings, Mouse Settings.
5	
	Working with documents: Creating a document, Manage files and folders for documents, working with
6	icons, editing documents - Text formatting and alignment, Indentation.
7	Paragraph formatting - Margins, tabs and page numbering.
	Working with tables and borders - Printing - Working with Images and Text - Find and replace text -
8	Mail merge.
	Creating and formatting a presentation -Creation of a new Presentation, Adding Slides and Text to a
	Presentation, Editing Slide Text, Saving a Presentation, and Running a Slide Show- Adding Tables and
9	charting data - Modifying objects and adding Images, Preparing to deliver a presentation.
	Creating and modifying a worksheet- Formatting Worksheets - Working with multiple worksheets -
10	Performing Calculations
	Surfing information using Search Engines, Saving web pages to a disk, Composing E-mail, Sending E-
11	mail.
	C Programming: Flowcharts, Algorithm, Keywords, Identifiers, variables, Constants, Scope of Life of
	variables- Local and Global variables. Data types, Expressions, Operators - Arithmetic operators,
	Logical operators, Relational, conditional, Bitwise operators - Input/ Output Library functions.
12	Declaration statement
	l statement: If statement, If Else statement, Nesting of IfElse statement, Switch statement - Iteration
13	statements.
14	Arrays: Concept of Single and Multidimensional arrays, Array declaration, and initialization of arrays.
15	Functions: User defined and library functions
16	File Handling: Opening a file, Closing a file, Reading and Writing into a file, Appending to a file
10	The financing. Opening a me, closing a me, reading and writing mo a me, Appending to a me

17	SRS of Biological Databases
a.	National Center for Biotechnology Information (NCBI)
b.	Nucleotide/ Genome Databases
с.	Protein Sequence Database
d.	Structure databases
e.	Protein Pattern Databases
18	Different file formats
a.	Genbank
b.	Genpept
с.	FASTA
d.	EMBL
e.	NBRF/PIR, GDE
19	Entrez and Literature Searches.
a.	PubMed
b.	PubMed central
c.	OMIM / OMIA
d.	Citation matcher
20	File format conversion
a.	FmtSeq
b.	Seqret (EMBOSS)
c.	Sequence Manipulation Suite
21	Protein Structure Database - NCBI-Structure, Swiss-Prot, PDB, PDB file format
22	Sequence Alignment - BLAST, BLAT
23	Sequence Analysis
a.	Dot Plot
b.	Pairwise alignment
c.	Multiple Sequence Alignment
24	Phylogenetic analysis using PHYLIP, Phylodraw, Treeview,
25	Softwares
a.	BioEdit.
b.	GeneDoc
c.	ClustalW / X, MEGA
26	Visualization Tool
a.	RasMol
b.	Cn3D
c.	MolMol
27	Submission Tools for new and revised data
	Learning Outcome: Students should be able to apply basic bioinformatics tools for DNA/RNA/protein sequence alignments, finding gene/protein homolog, designing primers, identifying mutations, reconstructing phylogenetic trees, etc.

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- I (NEP-20) Practical III Computer for Biologists, Database management system

Time 6hrs	Marks-25+25=50
Q.1: Major experiment on Databases	20 Marks
Q.2: Minor Experiment on Database management	05 Marks
Practical Internal	
Q.3: Viva-Voce	10
Q.4: Practical Record, Attendance and Assignments	15

Scheme of Teaching, Learning & Examination leading to Two Years PG Degree Master of Science in the Programme Bioinformatics following Three Years UG Programme wef 2023-24 Two Years- Four Semesters Master's Degree Programme- NEPv23 with Exit and Entry Option (M.Sc. Part I) Semester II

S. N.	Subject	Type of Course	Subject Code	Teaching & Learning Scheme			Duration Of Exam	Exam						heme					
											Hours			imum Marl	KS		Mir	nimum Passi	ng
				1	Feachi Per	ng Per Week			Credits			The	ory	Pra	ctical	Total Marks			
				L	Т	Р	Total	L/T	Practical	Total		Theory Internal	Theory +MCQ External	Internal	External		Marks Internal	Marks External	Grade
1	DSC-I.2 Techniques in Bioinformatics	Th-Major	BOT 201	4			4	4		4	3	30	70			100	12	28	Р
2	DSC-II.2 Biochemistry	Th-Major	BOT 202	4			4	4		4	3	30	70			100	12	28	Р
3	DSC-III.2 Genomics	Th-Major	BOT 203	3			3	3		3	3	30	70			100	12	28	Р
4	DSE-II/MOOC (Elective Option) Biological Database Management System	Th-Major Elective	BOT 204	3			3	3		3	3	30	70			100	12	28	Р
																	Minimum Passing Marks		
5	DSC-I.2 Lab	Pr-Major				2	2		1	1	3			25	25	50	25		Р
6	DSC-II.2 Lab	Pr-Major				2	2		1	1	3			25	25	50	25		Р
7	DSC-III.2 Lab	Pr-Major				2	2		1	1	3			25	25	50		25	Р
8	DSE-II Laboratory/MOOC Lab	Pr-Major Elective				2	2		1	1	3			25	25	50	2	25	Р
9	# On Job Training, Internship/	Related to		12	0 Hou	rs				4*									P*
	Apprenticeship; Field projects	Major			nulativ	•													
	Related to Major @ during vacations				g vaca														
	cumulatively				emeste Semest														
8	Co-curricular Courses: Health and	Generic		90) Hour	S													
	wellness, Yoga Education, Sports and	Optional			nulativ	•													
	Fitness, Cultural Activities,			-	n Sem														
	NSS/NCC,			S	em IV														
	Fine/Applied/Visual/Performing Arts																		1
	During Semester I, II, III and IV																		1
				Exit C	Si Si	udent	has to ear	rn Tota	l minimum 4	Credits	cumulatively	ternship in the during Vacat ear UG Degre	tions of Seme	• •		rom interr	nship in ord	er to exit aft	er

TOTAL					18+4*			550		

L: Lecture, T: Tutorial, P: Practical/Practicum

Pre-requisite Course mandatory if applicable: Prq, Theory : Th, Practical/Practicum: Pr, Faculty Specific Core: FSC, Discipline Specific Core: DSC, Discipline Specific Elective: DSE, Laboratory: Lab, OJT: On Job Training: Internship/ Apprenticeship; Field projects: FP; RM: Research Methodology; Research Project: RP, Co-curricular Courses: CC

Note : # On Job Training, Internship/ Apprenticeship; Field projects Related to Major (During vacations of Semester I and Semester II) for duration of 120 hours mandatory to all the students, to be completed during vacations of Semester I and/or II.

This will carry 4 Credits for learning of 120 hours. Its credits and grades will be reflected in Semester II credit grade report.

Note: Co-curricular Courses: In addition to the above, CC also include but not limited to Academic activities like paper presentations in conferences, Aavishkar, start-ups, Hackathon, Quiz competitions, Article published, Participation in Summer school/ Winter School / Short term course, Scientific Surveys, Societal Surveys, Field Visits, Study tours, Industrial Visits, online/offline Courses on Yoga (Yoga for IQ development, Yoga for Ego development, Yoga for Anger Management, Yoga for Eyesight Improvement, Yoga for Physical Stamina, Yoga for Stress Management, etc.). These can be completed cumulatively during Semester I, II, III and IV. Its credits and grades will be reflected in semester IV credit grade report.

Part B	
Syllabus Prescrib	ed for 2023 Year PG. Programme
Programme	M.Sc. Bioinformatics
Semester II	
Code of the Cour	se Subject Title of the Course/ Subject No. of periods/
week	
DSC I.2	Techniques in Bioinformatics 04
Cos :	
	nowledge about various Biological databases that provide information
-	eic acids and protein.
5. Introductio	n to Biological databases and database systems.
6. Overview a	about types and Biological data and database search tools.
	bout the different types of Biological databases.
-	out different types of protein and other organism specific databases.
	about pathway and enzyme databases, Sequence submission tools.
Unit-I:	Primary Sequence & Structure Databases: Genbank, SwissProt/Uniprot,
(Biological	EMBL, PIR, PDB, MMDB, NDB, CSD, KEGG etc. Derived
Databases)	(Secondary) Databases of Sequences and Structure: Prosite, PRODOM,
	PRINTS, Pfam, BLOCK, INTERPRO etc. SSOP, CATH, DSSP, FSSP,
	RNAbase,
	Genome Databases (at NCBI, EBI, TIGR, SANGER), High-throughput
TT •/ TT	genomics sequences (EST, STS, GSS), ENSEMBL.
Unit-II:	Algorithms for searching sequence patterns: MeMe, PHI-BLAST,
(Advanced	SCanProsite and PRATT; Algorithms for generation of sequence
techniques)	profiles: Profile Analysis method of Gribskov, HMMER, PSI-BLAST; Basic concepts on identification of disease genes, role of bioinformatics-
	OMIM database, reference genome sequence, integrated genomic maps,
	gene expression profiling; identification of SNPs, SNP database
	(DbSNP). Role of SNP in Pharmacogenomics, SNP arrays.
Unit III:	Introduction, DNA linguistics, Convey equation, Consensus, CG-
(Signals in	islands, HMM, Gibbs sampling, Gene Promoter, Enhancers, Gene
DNA)	Prediction – introduction, statistical approaches, Spliced alignment,
	Reverse gene finding, some other problems.
Unit-VI :	Introduction, Deletion, Insertion, Inversion, Translocation, Capping
(Genome	chromosomes, Caps and tails, Genome duplication, Genome
Rearrangement)	rearrangment tools, Synteny and Rearrangement.
Unit-V : (DNA	DNA microarray: database and basic tools, Gene Expression Omnibus
microarray)	(GEO), ArrayExpress, SAGE databases DNA microarray:
	understanding of microarray data, normalizing microarray data,
	detecting differential gene expression, correlation of gene expression
	data to biological process and computational analysis tools (especially
	clustering approaches)
Unit-VI :	Gene amplification and PCR: Basic principles and methodologies of
(Primer	PCR,
Designing)	

design of PCR primers, RT-PCR and Real-Time PCR and their utility.					
Primer design for PCR, Primer design for general cloning, Design of					
forward and reverse primer.					
Suggested Reading:					
6. Baxevanis, A.D. and Francis Ouellellette, B.F. (1998) "Bioinformatics- a practical					
guide to the analysis of genes and proteins" John Wiley and Sons					
7. Des Higgins, Willie R. Taylor, Willie Taylor (2000) "Bioinformatics: sequence,					
structure, and databanks : a practical approach" Oxford University Press					
8. Mount, D. (2004) "Bioinformatics: Sequence and Genome Analysis"; Cold Spring					
Harbor Laboratory Press, New York. (ISBN 0-87969-712-1)					
9. Sharma, V. Munjal, A. and Shankar, A. (2008) "A text book of Bioinformatics" first					
edition, Rastogi Publication, Meerut – India.					
10. Stanley Letovsky (1999) "Bioinformatics: databases and systems" Springer					
Learning Outcome:					
1. Basic algorithms used in Pairwise and Multiple alignments.					
2. Understanding the methodologies used for database searching, and					
determining the accuracies of database search.					
3. Application of probabilistic model to determine important patterns.					
4. Prediction of structure from sequence and subsequently testing the accuracy					
of predicted structures.					
5. Determine the protein function from sequence through analyzing data.					
6. Analysis and development of models for better interpretation of biological					
data to extract knowledge.					

Part B								
Syllabus Prescrib	ed for 2023 Year	PG. Programme						
Programme		M.Sc. Bioinformatics						
Semester II								
Code of the Cour	se Subject Title of the Course/ Subjec	ct No. of periods/						
week								
DSC II.2	Biochemistry	04						
the student	 Cos: 1. The cells of living organisms contain thousands of bio-molecules. From this course the students will know the structure-function relationship of these molecules, and their importance with regard to maintenance and perpetuation of the living systems. 							
Unit-I : (Biochemistry)	Water- Water as the universal biological water relationship Carbohydrates- Monosaccharides, oligo peptidoglycans, proteoglycans and glycop of carbohydrates. Lipids- Fatty acids, acylglycerols, phospl membrane Icoprenoids, Icosanoids and th	solvent, concept of osmolarity, osaccharides, polysaccharides, proteins, biological importance holipids, sphingolipids, sterols,						

TT •4 TT							
Unit-II:	Levels of protein structure – primary, secondary, tertiary and quaternary						
(Biochemistry)	with examples; alpha helix, beta sheet and beta turn; domains and structural motify: Pamahandran plot. Possmann fold, Immunoglobulin						
	structural motifs; Ramchandran plot, Rossmann fold, Immunoglobulin fold; Double helical structure of DNA – DNA polymorphism; types of						
	RNA and its secondary and tertiary structure.						
Unit-III:	Transcription- Prokaryotic and eukaryotic Transcription- RNA						
(Biochemistry)	polymerases- general and specific transcription factors- regulatory						
(Diothemistry)	elements- mechanism of transcription regulation- Transcription						
	termination; Post transcriptional modification Translation- Genetic code-						
	Prokaryotic and eukaryotic, Translation - translational machinery-						
	Mechanism of initiation- elongation and termination- Regulation of						
	translation.						
Unit-IV :	Diffusion and Osmosis, Osmotic pressure, osmolarity of fluids and						
(Biochemistry)	electrolyte balance. Donnan membrane equilibrium, dialysis. Viscosity,						
	Measurement and applications, Surface tension, Measurements and						
	viscosity of blood, Electrochemical Techniques - principles of redox reactions, Centrifugation principles, basic principles and laws of						
	sedimentation. Preparative and analytical ultracentrifuges,						
Sedimentation equilibrium methods, Types of separation method							
preparative centrifuges, Differential and density gradient centrifuge							
Absorption Spectroscopy basic principles.							
Unit-V:	Introduction to enzymes: Holoenzyme, apoenzyme, and prosthetic						
(Biochemistry)	group; Interaction between enzyme and substrate- lock and key model,						
	induced fit model. Features of active site, activation energy, Rate						
•	enhancement through transition state stabilization, Chemical mechanism						
	for transition state stabilization. Enzyme specificity and types. Enzyme						
	Commission system of classification and nomenclature of enzymes (Class subclass and sub sub class with one example).						
Unit-VI:	Structure and functions of Biomembranes: Structures (Models) and						
(Biochemistry)	functions- properties, thermodynamics and transport types-passive, active and						
	co-transport, pumps, membrane selectivity-electrolytes and non-electrolytes,						
	creation of membrane- Artificial membrane (liposomes). Signal transduction						
	mechanisms- stimuli (ligands, mechanical forces, osmolarity, temperature and light) recenters (CPCPs, tyrasing kineses, sectulabelingstrass) and second						
	light), receptors (GPCRs, tyrosine kinases, acetylcholinesterase) and second messengers (calcium, lipid messengers and nitric oxide) with reference to major						
	pathways.						
	Suggested Reading:						
	1. Banwell, C.N. (1983) "Fundamentals of Molecular Spectroscopy"; Tata						
	Graw Hill Publishing Company, New Delhi, India.						
	ntor, C.R. and Schimmel, P. (1985) "Biophysical Chemistry Vol. 1 and 2";						
	H. Freeman and Company, New York, US.						
	eifelder, D. (1982) "Physical Biochemistry"; W.H. Freeman and Company,						
	w York, USA. rton, R, Moran, L, Scrinmgeour, G, Perry, M, Ravon, D (2005) "Principles						
	Biocehmistry", 4th edition, Prentice-Hall of India, Kolkata.						
	ach, A.R. (1992) "Molecular Dynamics Simulation", John Wiley and Sons,						
	w York, USA						
	rayanan, P (1999) "Introductory Biophysics"; New Age Publishing House,						
	imbai, India.						

- 7. Palmer, T (2004)"Enzyme: Biochemistry, Biotechnology, Clinical Chemistry" Affiliated-East-West Press, India.
- 8. Resnick, R., Halliday, D. and Walker (2001) "Fundamentals of Physics", Sixth edition, John Wiley and Sons, USA.
- 9. Roy R. N. (2007) "A text book of Biophysics" First Edition, New Central Book Agency, Ltd, Kolkata.
- 10. Satyanarayana, U (2005) "Biochemistry", Books Allied (P) Ltd, Kolkata.
- 11. Talwar, GP, Srivastava LM, (Editor) (2003) "Textbook of Biochemistry and Human Biology", 3rd edition, Prentice-Hall of India Pvt Ltd, New Delhi.
- 12. Tipler, P.A. (1999) "Physics for Engineers and Scientists"; Fourth edition, W.H. Freeman and Company, USA.
- 13. VasanthaPattabhi and N. Gautham. (2001) "Biophysics"; Narosa Publishing Company, New Delhi, India.
- 14. Voet, D (2004), "Biochemistry", 3rd edition, Wiley, USA.

Learning Outcome:

- 1. Students will explain/describe the synthesis of proteins, lipids, nucleic acids, and carbohydrates and their role in metabolic pathways along with their regulation at the epigenetic, transcriptional, translational, and post-translational levels including RNA and protein folding, modification, and degradation. Regulation by non-coding RNAs will be tied to the developmental and physiological functioning of the organism.
- 2. Students will analyze structural-functional relationships of genes and proteins from bacteria to eukaryotes using genomic methods based on evolutionary relationships.
- 3. Students will use current biochemical and molecular techniques to plan and carry out experiments.

Part B						
Syllabus Prescribed for 2023	Year	PG. Programme				
Programme		M.Sc. Bioinformatics				
Semester II						
Code of the Course Subject	Title of the Course/ Subject	No. of periods/				
week						
DSC III.2	Genomics	03				
Cos:						
6. Familiarize students with genomic methods.						
7. Encourage students to	hink on genomic scale.					
8. Excite students about h	6					
	omics methods and concepts.					
	in the context of theoretical and	applied genomics				
11. research.		11 8				
12. Know the broad applic	ations of genomics.					
		venomics.				
13. Become proficient with basic web-based tools to "do" genomics.14. Appreciate the benefits of using math and computer sciences to understandbiology						
in genome scale.	of using much and computer set	ences to understandbrology				
Unit-I : (Introduction	Introduction to genomics-	scope and application,				
-	e	1 11 .				
to Genomics)	Computational genomics, Org	1 0				
	and eukaryotic genomes, Geno	one maps and types, current				

[
	sequencing technologies, partial sequencing, gene				
	identification, gene prediction rules and software, Genome				
	databases; Annotation of genome, Genome diversity:				
	taxonomy and significance of genomes – bacteria, yeast,				
	Caenorhabditis, Homo sapiens, Arabidopsis, etc.				
Unit-II : (Functional	Microarray - Gene Expression, methods for gene expression				
Genomics)	analysis; DNA array for global expression profile; Types of				
	DNA array, Array databases; Applications of DNA				
	microarray – analysis of gene expression, differential gene				
	expression under different conditions and during				
	development of organisms, Human Genome Project -				
	Construction of physical maps; Basics of radiation hybrid				
	maps; Sequencing of the entire human genome, annotation				
	and analysis of genome sequences: sequence repeats,				
	transposable elements, gene structure, Pseudogenes				
Unit-III : (Computational	Introduction to genome analysis, Gene analysis; gene order;				
Genome Analysis)	chromosome rearrangement; compositional analysis;				
	clustering of genes; composite genes; Basics of Single				
	Nucleotide Polymorphisms, detection and its implications;				
	dbSNP and other SNP related database, Gene Prediction				
	method, Perdition of ORFs, Prediction of signal sequence				
	(Promoter, Primers, Splice site, UTR etc); BLAST, PSI				
	BLAST, PHI BLAST; Epitope prediction.				
Unit-IV : (Comparative	Relevance of comparative genomics; orthologs and				
Genomics)	paralogs; Comparative genomics of prokaryotes; Minimal				
	genome; Vertical and horizontal gene transfer, Comparative				
	genomics of organelles; Comparative genomics of				
	eukaryotes, Differences and similarities in genomes of				
	organisms; Genome comparison tool, Applications and				
	scope of comparative genomics.				
Unit-V: (Phylogenetic	Phylogenetics, cladistics and ontology; Phylogenetic				
analysis)	representations – graphs, trees and cladograms; Steps in				
	phylogenetic analysis; Methods of phylogenetic analysis –				
	similarity and distance tables, distance matrix method;				
Unit-VI: (Phylogenetic	Method of calculation of distance matrix (UPGMA,				
analysis)	WPGMA); The Neighbour Joining Method; The Margoliash				
	method; Character-based Methods – maximum parsimony,				
	maximum likelihood; Reliability of Phylogenetic trees;				
	Steps in constructing alignments and phylogenies;				
	Limitations of phylogenetic algorithms; Phylogenetic softwares – PAUP, PHYLIP, MacClade.				
1 Reraman N H	Suggested Reading: (2007), "Comparative genomics" Volume 2, Humana Press				
	mith C.L., (1993) "Genomics: the science and technology				
	an Genome Project" John Wiley and Sons				
	Carlson D. B. (2008), "Genomics: fundamentals and				
	forma Healthcare				
	, "Comparative genomics" Springer				
	F., Miller J.H., Suzuki D.T., (2000) "An Introduction to				
	is" W.H. Freeman and Co., Publishers.				
Ochetic Analys					

- 6. Pevsner J (2009), "Bioinformatics and functional genomics", Edition 2, John Wiley and Sons
- 7. Primrose S. B., Twyman R. M. (2004), "Genomics: applications in human biology" Wiley-Blackwell
- 8. Primrose S. B., Twyman R. M. (2006), "Principles of gene manipulation and genomics" Wiley-Blackwell
- 9. Saccone C., Pesole G., (2003), "Handbook of comparative genomics: principle and methodology" John Wiley and Sons
- 10. Suhai S (2000), "Genomics and proteomics: functional and computational aspects" Springer.

Learning outcome:

- 1. Knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics
- 2. Existing software effectively to extract information from large databases and to use this information in computer modeling
- 3. Problem-solving skills, including the ability to develop new algorithms and analysis methods.
- 4. An understanding of the intersection of life and information sciences, the core of shared concepts, language and skills the ability to speak the language of structure-function relationships, information theory, gene expression, and database queries

ELECTIVE OPTIONS FOR NEP-20

Part B		
Syllabus Prescribed for 2023	Year PG.	Programme
Programme	M.S	c. Bioinformatics
Semester II		
Code of the Course Subject	Title of the Course/ Subject	No. of periods/
week		
DSE II Biolo	ogical Database Management Syster	m 03
Cos :		
9. Understand the basic co	oncepts and the applications of databa	ise systems.
10. Master the basics of SC	QL and construct queries using SQL.	
11. Understand the relation	al database design principles.	
12. Familiar with the basic	issues of transaction processing and o	concurrency control.
13. Familiar with database	storage structures and access technique	ues.
Unit I : (Introduction to	Database & Database users, Chara	acteristics of Database,
BDBMS)	Database System applications, Datab	base System Versus File
	Systems, Concepts and Architecture,	, Data Models, Schemas
	& Instances, DBMS architecture an	nd Data, Independence,
	Database languages & Interfaces,	View of Data, Data
	Models, Database Languages,	-
	Administrators, Database System St	ructure

Unit II : (Introduction	ER Model: Keys, Constraints, Design Issues, Extended ER				
Data models)	features, Reductions of ER Schema to Tables. Relational				
	Model: Structure, Relational Algebra; Hierarchical Model,				
	Network Model, Object Oriented Model				
Unit-III : (Structured	Basic Structure, Set Operations, Aggregate Functions, Null				
Query Language)	Values, Nested Sub queries, Views, Integrity: Domain				
	constraints, Joined Relations, Data-Definition Language,				
	Embedded SQL, Dynamic SQL; Locking techniques,				
	Granularity of Data Items – Database System Architecture				
	and information retrieval: Centralized and Client-Server				
	Architecture, Distributed DBMS, Data Mining, Data				
	Integration, Data Warehousing				
Unit IV : (Relational	Pitfalls in Relational Design Database, Functional				
Database and Storage)	dependencies, Decomposition Normal Forms – 1NF, 2NF,				
	3NF & Boyce- Codd NF, Overall Database Design Process,				
	Multi-valued Dependencies, Data Storage - Ordered				
	indices, Static Hashing, Dynamic Hashing - Transaction				
	Management – Security and Authorization.				
Unit V : (Introduction to	Introduction to MySQL, basics installation, server				
MySQL)	technology architecture, Basic MySQL datatype, Database				
	languages, Transaction Management, Storage Management,				
	Database Administrator, Database Users, Overall Syste				
	Structure, MySQL connectivity				
Unit VI : (Artificial Neural	Artificial Neural Network: Historic evolution – Perceptron,				
Network)	characteristics of neural				
	networks terminology, models of neuron Mc Culloch – Pitts				
	model, Perceptron, Adaline				
	model, Basic learning laws, Topology of neural network				
	architecture, single layer ANN,				
	multilayer perceptron, back propagation learning, input -				
	hidden and output layer				
	computation, back propagation algorithm, Applications of				
	ANN.				
0 Data C I (200	Suggested Reading:				
9. Date, C.J. (200 Addison Wesle	0) "An introduction to Database systems"; Seventh Edition,				
	wathe (2004) "Fundamentals of Database systems" Fourth				
	on Wesley Publishers.				
	., Korth, H.F. and Sudarshan, S. (2002) "Database system				
	urth Edition, McGraw Hill Publishers.				
-	2001) "Principles of Database systems"; Second Edition,				
Galgotia Public	· ·				
Learning Outcome:					
8	tion processes of arithmetic mean, geometric mean, harmonic				
	nedian, mode etc. and other measures ofcentral tendency and				
	plication in real life				
-	ative measures of dispersion of variables and their reallife				
applicat	-				
3. Differen	nt testing procedures for hypothesis testing				
4. Differen	nt operation un matrix analysis				

 Data storage and data management in database
 Writing script using SQL for creating, manipulating anddeleting data from database

Syllabus Prescribed for 2023 Programme: M. Sc. Bioinfor		PG Programme				
Semester 1 Code of the	Title of the Course/Subject	(No. of Periods/Week)				
Course/Subject	(Laboratory/Practical/practicu m/hands-on/Activity)					
Practical IV	Practical based on DSC I.2 & DSc- II.2	04				

CO:

1. To impart knowledge of methods and techniques for biomolecules separation and purification.

* List of Practical/Laboratory Experiments/Activities etc.

Biochemistry

r									
1	Experiment based on Osmosis by using Potato Osmoscope								
2	SDS-PAGE Analysis of Protein								
3	Calculation of Viscosity Index								
4	Measurement of Surface Tension								
5	Working and Principle of Biological Instruments (Ultra centrifuge, NMR Spectroscopy, Mass Spectroscopy, Electron Microscopy and Scanning Electron Microscopy)								
6	Trypsin inhibitor activity.								
7	To demonstrate kinetic behavior of enzymes by using spectrophotometer.								
8	Separation of lipids by thin layer chromatography.								
9	To study the characteristics of UV absorption spectra of Proteins.								
10	To prepare the buffers & measurement of pH.								
11	To determine the titration curve of amino acids & calculate the pKa values.								
12	2 To determine the Tm of DNA.								
13	3 Denaturation & Renaturation of DNA.								
14	To determine the osmotic fragility of RBC.								
15	Qualitative tests for-carbohydrates, proteins, amino acids and lipids.								
16	Preparation of standard buffers and determination of pH.								
17	Verification of Beer-Lambert's Law.								
18	Estimation of carbohydrate by anthrone method.								
19	Estimation of blood glucose by Folin-Wu method.								
20	Estimation of amino acids by ninhydrin method.								
21									
22	Determination of saponification value and iodine number of fats.								
23	Estimation of ascorbic acid.								
24	Titration curve for amino acids and determination of pK value.								
25	Sorenson-formol titration for amino acid estimation								

Techniques in Bioinformatics

1	Primary Sequence & Structure Databases								
a.	Genbank								
b.	SwissProt/Uniprot								
c.	EMBL								
d.	PIR								
e.	PDB								
f.	MMDB								
g.	NDB								
h.	CSD								
i.	KEGG - pathway database								
j.	PHI-BLAST								
k.	PSI-BLAST								
1.	Identification of SNPs								
m.	SNP database (DbSNP)								
n.	DNA Microarray Analysis								
0.	GenSprings GX								
	 Learning Outcome: Foster interdisciplinary research in the fields such as computer science, biosciences,mathematics, chemistry and physical sciences Interpret biological information computationally Develop programming skills in the languages of C++, Perl, Python and R Analyse genomic data and contribute to personalised medicine Demonstrate entrepreneurial skills 								
	6. Establish Bioinformatics start-ups								

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I Bioinformatics, Semester- II (NEP-20)

PRACTICAL IV:- (Techniques in Bioinformatics and Biochemistry)

TIME	: -6 Hrs. M	Maximum Marks: -50 + 50 = 100				
Q.1.	Perform Major Experiment in Bioinformatics.	15				
Q.2.	Perform Minor Experiment in Bioinformatics.	10				
Q.3.	Perform Major Experiment in Biochemistry.	15				
Q.4.	Perform Major Experiment in Biochemistry.	10				
Q.5.	Internal marks: Practical Record (20); Viva voce (2) performance and Activity – Industrial visit report /W (10)					

 Syllabus Prescribed for 2023 Year
 PG Programme

 Programme: M. Sc. Bioinformatics
 Remester 1 Code of the
 Title of the Course/Subject
 (No. of Periods/Week)

 Semester 1 Code of the
 Laboratory/Practical/practicu
 m/hands-on/Activity)
 Practical based on DSC III.2
 02

Genomics

PRACTICAL V: -

26	Sequence Analysis								
27	Gene Analysis and identification								
28	Genome databases								
29	Annotation of genome								
30	Perdition of ORFs								
31	dbSNP and other SNP related database								
32	Promoter prediction								
33	Primers designing								
34	Splice site prediction								
35	UTR prediction								
36	BioEdit								
37	GENSCAN								
38	GeneMark								
39	Samtools, bedtools								
40	NCBI SRA								
41	Sequin, NGS data analysis								
42	Glimmer								
43	Phylogenetic analysis using PHYLIP, Phylodraw, PAUP, Treeview, JalView.								
	 Learning Outcome: Understand the principles of various fields of chemistry and biology (organic chemistry, analytical chemistry, biochemistry, genetics, metabolism, and molecular biology) Apply modern instrumentation theory and practice to biochemical problems Recognize potential laboratory safety concerns and address them using appropriate techniques. 								

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I Bioinformatics, Semester- II (NEP-20)

TIME	: -6 Hrs.	Maximum Marks: -25 + 25 = 50
Q.1.	To perform any one analytical experiment.	15
Q.2.	To perform given experiment on databases.	10

(Genomics)

Q.3. Internal marks : Practical Record (10); Viva voce (10); Student overall 25 performance and Activity – Industrial visit report / Monograph and Attendance (05)

Sant Gadge Baba Amravati University, Amravati

Syllabus Prescribed for 2023 Programme: M. Sc. Bioinform		rogramme
Semester 1 Code of the	Title of the Course/Subject (Laboratory/Practical/practicu	(No. of Periods/Week)
Course/Subject	m/hands-on/Activity)	
Practical – VI	Practical based on Paper DSE- II	02

CO:

1. To impart knowledge of biological molecules, databases, using advanced computer and physicochemical methods.

* List of Practical/Laboratory Experiments/Activities etc.

1	Structure Query Language
2	Exercise in RDBMS (MYSQL)
a.	Data Definition Language (DDL) statements: Creating database, Selecting database, Deleting database, Creating table,Modifying Table, Deleting table
b.	Data Manipulation statements: Inserting, updating and deleting records Retrieving Records Retrieving specific rows and columns
с.	Use of MySQL operators - Arithmetic operators, Comparison Operators, Logical operators,, Math functions, Aggregate functions
d.	String operations
e.	Limiting, Sorting and grouping query results
f.	Handling null values
g.	Renaming or aliasing table and column names
h.	Using subqueries
i.	Using Joins - joining a table to itself, joining multiple tables
j.	Use of Indexes
k.	Security Management
1.	Granting and Revoking rights on tables

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I Botany, Semester- II (NEP-20)

PRAC	TICAL V: - (Genomics)	
TIME	: -6 Hrs.	Maximum Marks: -25 + 25 = 50
Q.1.	To perform any one analytical experiment.	15
Q.2.	To perform given experiment on databases.	10

Q.3. Internal marks : Practical Record (10); Viva voce (10); Student overall 25 performance and Activity – Industrial visit report / Monograph and Attendance (05)

Open Elective for other stream/ faculty

Part B								
Syllabus Prescribed f	or 2022 Year		PG. Programme					
Programme				M.Sc. Bioinformatics				
Semester II								
Code of the Course S	ubject Tit	le of the Cou	rse/ Subject	No. of periods/				
week								
OEC I		Pharmacoge	nomics	04				
using genomic 2. To understand person's geneti Unit-I: (Pharmacogenomics and personalized medicine)	applications f how individu c makeup wh Pharmacoge pharmacoge drugs on Ge drug develop and the prom of pharmaco	For drug action alization of control ile reducing unetics- Roots nomics, Gene ne expression, pment. Conce nise of person ogenomics to control	and toxicity lrug therapy <u>nwanted dru</u> of pharmac etic drug res pharmacoge pt of individ alized medic customize the	can be achieved based on a <u>g effects.</u> ogenomics and it is not just ponse profiles, the effect of enomics in drug discovery and ualized drug therapy, Drivers ine, Strategies for application erapy, Barriers.				
Unit-II: (Human Genomics)	Microbial g computation outcome of elements, ge Biological c Pharmacoge	enomics, com al genome and host pathogen nome duplication omplexity. Sin nomics - appr	nputational a alysis, Genor interactions tion, analysis ngle nucleotio oaches, num	and computational biology, analysis of whole genomes, mic differences that affect the , Protein coding genes, repeat s of proteome, DNA variation, de polymorphisms (SNP's) in ber and types of SNPs, Study Development of markers.				

Unit III: (Drug	Viability and Adverse drug reaction in drug response, Multiple									
Design)	inherited genetic factors influence the outcome of drug treatments,									
	Association studies in pharmacogenomics, Strategies for									
	pharmacogenomics Association studies, Benefits of									
	Pharmacogenomics in Drug R & D.									
Unit-VI : (Genomic	Platform technologies and Pharmaceutical process, its applications									
applications)	to the pharmaceutical industry, Understanding biology and diseases,									
•	Target identification and validation, Drug candidate identification									
	and optimization, safety and toxicology studies. The need of protein									
	structure information, protein structure and variation in drug targets-									
	the scale of problem, Mutation of drug targets leading to change in									
	the ligand binding pocket.									
Unit-V : (Drug	Targeting Methods Nanoparticle: Introduction, Preparation,									
Targeting)	Evaluation Liposomes: Introduction, Preparation, Evaluation.									
	Micro Capsules / Micro Spheres Microsphere: Introduction,									
	Types, preparation, Evaluation Monoclonal Antibodies:									
	Introduction, preparation, Application Niosomes: Introduction,									
	preparation, Application Aquasomes: Introduction, preparation,									
	Application Phytosome: Introduction, preparation									
	Electrosomes: Introduction, preparation, Application									
	Suggested Reading:									
1 Martin M 7d	anowicz, M.M. "Concepts in Pharmacogenomics" Second Edition,									
	ety of Health-System Pharmacists, 2017.									
	Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized									
	iley-Blackwell, 2009.									
1 ·	nacogenomics in Drug Discovery and Development" Humana Press,									
2nd Edition, 20										
	/14.									
Learning Outcome:										
	dent would be able explain the basic principles of pharmacology and omics as they pertain to pharmacogenomics.									
-										
	dent would be able distinguish the different considerations applying to									
	genes involved in pharmacokinetics versus pharmacodynamics, and how									
	impacts the way that these genes are studied.									
	3. Student would be able understand the impact of emerging technologies									
such as next generation sequencing, on discovery and implementation o										
-	rmacogenomics.									
	4. Student would be able understand several specific examples of important									
-	pharmacogenomics and their implementation in clinical practice.									
	dent would be able apply the available information resources for gene-									
	g interactions in informatics projects.									
	dent would be able understand the issues and challenges of									
imp	lementing pharmacogenomics in the clinic.									

Scheme of Teaching, Learning & Examination leading to Two Years PG Degree Master of Science in the Programme Bioinformatics following Three Years UG Programme wef 2023-24 Two Years- Four Semesters Master's Degree Programme- NEPv23 with Exit and Entry Option (M.Sc. Part II) Semester III

S. N.	Subject	Type of Course	Subject Code		Т	Teachin	g & Learni	ng Sche	eme		Duration Of Exam			Examina	tion & Evalu	ation Sch	eme		
											Hours		Maxi	mum Mark	s		Mir	nimum Passi	ing
				Т	eaching Per W	g Period Veek			Credits			Theo	ory			Total Marks	l		
				L	Т	Р	Total	L/T	Practical	Total		Theory Internal	Theory+ MCQ External	Internal	External		Marks Internal	Marks External	Grade
1	Contemporary Applied Technological Advancements in Research relevant/supportive to Major DSC-I.3	Th-Major	BOT 02	4			4	4		4	3	30	70			100	12	28	Р
2	DSC-II.3 System Biology	Th-Major	BOT 301	4			4	4		4	3	30	70			100	12	28	Р
2	DSC-III.3 Parasite Bioinformatics	Th-Major	BOT 302	3			3	3		3	3	30	70			100	12	28	Р
3	DSE-III /MOOC (Elective Option) Bio-programming I	Th-Major Elective	BOT 303	3			3	3		3	3	30	70			100	12	28	Р
																		m Passing arks	
4	DSC-I.3 Lab/Pr	Pr-Major				2	2		1	1	3			25	25	50		25	Р
5	DSC-II.3 Lab	Pr-Major				2	2		1	1	3			25	25	50	2	25	Р
5	DSC-III.3 Lab	Pr-Major				2	2		1	1	3			25	25	50	2	25	Р
6	DSE-III Lab /MOOC Lab	Pr-Major Elective				2	2		1	1	3			25	25	50	2	25	Р
7	Research Project Phase-I	Major			2	4	6	2	2	4				50		50	2	25	Р
8	Co-curricular Courses: Health and wellness, Yoga Education, Sports and Fitness, Cultural Activities, NSS/NCC, Fine/Applied/Visual/Performing Arts During Semester I, II, III and IV	Generic Optional			Hours 1latively 1 I to Se														
			1														1		1
	TOTAL				1	1		1	1	22	1		1		1	500	1		1

L: Lecture, T: Tutorial, P: Practical/Practicum

Pre-requisite Course mandatory if applicable: Prq, Theory : Th, Practical/Practicum: Pr, Faculty Specific Core: FSC, Discipline Specific Core: DSC, Discipline Specific Elective: DSE, Laboratory: Lab, OJT: On Job Training: Internship/ Apprenticeship; Field projects: FP; RM: Research Methodology; Research Project: RP, Co-curricular Courses: CC

Note: Co-curricular Courses: In addition to the above, CC also include but not limited to Academic activities like paper presentations in conferences, Aavishkar, start-ups, Hackathon, Quiz competitions, Article published, Participation in Summer school/ Winter School / Short term course, Scientific Surveys, Societal Surveys, Field Visits, Study tours, Industrial Visits, online/offline Courses on Yoga (Yoga for IQ development, Yoga for Ego development, Yoga for Anger Management, Yoga for Eyesight Improvement, Yoga for Physical Stamina, Yoga for Stress Management, etc.). These can be completed cumulatively during Semester I, II, III and IV. Its credits and grades will be reflected in semester IV credit grade report.

Part B							
Syllabus Prescribed	for 2023 Year	PG. Programme					
Programme	Γ	M.Sc. Bioinformatics					
Semester III							
Code of the Course S	Subject Title of the Couse/ Subject	No. of periods/ week					
		-					
DSC I.3 Cos:	Technological Advances in Researcl	h 04					
C03.							
1. Under	stand concepts and definitions of education	al research					
	a tentative research problem that will be su	ubsequently developed into					
	urch proposal						
	and use library reference sources and servi						
	stand how to develop Chapter One of the th						
	stand how to develop Chapter Two of the th						
Unit-I	stand how to develop Chapter Three of the 1.1 Introduction to Philosophy: defin						
Cint I	concept, branches	inton, nature and scope,					
	1.2 Ethics: Definition, moral philosophy.	, nature of moral judgments					
	and reactions.						
	1.3 Advance research in Botany						
	1.4 Referencing and Citation of referenc						
Unit-II	2.1 Ethics with respect to science and res						
	2.2 Intellectual honesty and research inte						
	2.3 Scientific misconducts: Falsification,	, Fabrication and					
	Plagiarism (FFP) 2.4 Redundant publications: duplicate and overlapping						
	publications, salami slicing						
	2.5 Selective reporting and misrepresent	ation of data					
Unit-III	3.1 Publication ethics: definition, introd						
	3.2 Best practices/standards setting i	nitiatives and guidelines:					
	COPE, WAME etc.						
	3.3 Conflicts of interest						
	3.4 Publication misconduct: Definition						
	lead to unethical behavior and vice3.5 Violation of publication ethics, auth						
	3.6 Identification of publication mis						
	appeals	conquer, comptantio and					
	3.7 Predatory publishers and journals						
Unit-IV	Viability and Adverse drug reaction in	n drug response, Multiple					
	inherited genetic factors influence the or	-					
	Association studies in pharmacog						
	1 0	studies, Benefits of					
TT	Pharmacogenomics in Drug R & D.	al maaaaa ita amuliaati					
Unit-V	Platform technologies and Pharmaceutic to the pharmaceutical industry, Understan						
	Target identification and validation, Dr						

	and optimization, safety and toxicology studies. The need of protein
	structure information, protein structure and variation in drug targets-
	the scale of problem, Mutation of drug targets leading to change in
	the ligand binding pocket.
Unit-VI	Targeting Methods Nanoparticle: Introduction, Preparation,
0111- 1	Evaluation Liposomes: Introduction, Preparation, Evaluation.
	Micro Capsules / Micro Spheres Microsphere: Introduction,
	Types, preparation, Evaluation Monoclonal Antibodies:
	Introduction, preparation, Application Niosomes: Introduction,
	preparation, Application Aquasomes: Introduction, preparation,
	Application Phytosome: Introduction, preparation, Application
	Electrosomes: Introduction, preparation, Application.
1 D 11 T	Suggested Reading:
	(2012). Predatory publishers are corrupting open access. Nature,), 179-179. <u>https://doi.org/10.1038/489179a</u>
	2006). Philosophy of Science. Routledge.
	P. (2018). Ethics in Competitive Research: Do not get Scooped; do not
	arized. ISBN: 978-938748086 Indian National Science Academy
(INSA) (2019).	
4. Ethics in Science Education, Research and Governance. ISBN: 978-81-939482-	
1-7. http://www.insaindia.res.in/pdf/Ethics Book.pdf	
5. MacIntyre, Alasdair (1967). A Short History of Ethics. London. National	
	of Sciences, National Academy of Engineering and Institute of
Medicine (2009). On Being a Scientist: A Guide to Responsible Conduct i	
Research: Third Edition. National Academies Press.	
6. Resnik, D	B. (2011). What is Ethics in Research & Why is it Important. National
	of Environmental Health Sciences, 1-10. Retrieved from
	vw.niehs.nih.gov/research/resources/bioethics/whatis/index.cfm
Learning Outcome:	¥
Students would be al	ble to
1. Stude	nts who complete this course will be able to understand and
comp	rehend the basics in research methodology and applying them in
resear	ch/ project work.
	course will help them to select an appropriate research design.
	the help of this course, students will be able to take up and implement
	arch project/ study.
4. The c	ourse will also enable them to collect the data, edit it properly and
	se it accordingly. Thus, it will facilitate students' prosperity in higher
educa	
5. The S	tudents will develop skills in qualitative and quantitative data analysis
	resentation.
1	nts will be able to demonstrate the ability to choose methods
	priate to research objectives
	× ×

Part B			
Syllabus Prescribed for 2023	Year Po	G. Programme	
Programme	M.	M.Sc. Bioinformatics	
Semester III			
Code of the Course Subject	Title of the Course/ Subject	No. of periods/	
week		r r	
DSC II.3	System Dielogy	04	
DSC 11.5 Cos :	System Biology	04	
focused on mammalia moving from molecul expression deepens and in cellular processes, v other to form modules core subcellular proce electrical excitability.	ble to introduce the student to content an cells, their constituents and the ar to modular. As our knowledge of twe develop lists of molecules (prote- ve need to understand how these mo- that act as discrete functional system sses such as signal transduction, tr In turn these processes come togeneration production production and action potent	eir functions. Biology is of our genome and gene eins, lipids, ions) involved lecules interact with each us. These systems underlie canscription, motility and gether to exhibit cellular	
Unit-I : (Introduction to	etion, proliferation and action potent System Biology – Introduction		
System Biology)	analysis of biological networks; No Biology, System Biology approace Organization of living cells, Co Systems Biology Markup Language	eed for system analysis in ches, Dynamic Analysis, omponents vs. Systems,.	
Unit-II : (System Kinetics)	Biochemical Reaction Kinetics – elementary reactions, complex rea equation for EK, Stochastic Mode and Km values of enzyme, Enzym	action, Michaelis-Menten elling and Simulation, Ki	
Unit-III : (Reconstruction of Biochemical Networks)	Metabolic network modeling simulation, Flux balance analysis, networks, Signaling Networks reconstruction, KEGG, Reactome designer software.	, Metabolic network Regulation of metabolic s, Applications of a	
Unit IV : (Introduction to Synthetic Biology)	Synthetic Biology - Introduction, biology, Tools in Synthetic biolo Biosensors and its applications, Sy cell and V-cell Simulations an concerns in the field of synthetic b	gy. Genetic engineering, ynthetic Life: Synthia; E- d Applications. ethical iology;	
Unit V : (Introduction to R	R programming - Introduction a		
programming)	manipulation, Objects and Module Reading data from files, Loops a creation, Packages.	es, Orders, Arrays, Lists, nd conditions, Functions	
Unit VI: (UNIX)	UNIX - File system - Overview - Te and Operation - UNIX filenames and with directories - loops and IF statem - Mastering the special features of the Unix commands - Configuring service Utilities Introduction to Linux -	1 file protections - working ents - Different File Editors e UNIX system - Advanced ces in Unix Networking	

Management - Types of users, Creating users- Granting Rights - File Quota, File-System Management and Layout - Login Process- Linux shells (bash and tcsh) - Shell Programming Networking on Linux - Printing and print sharing- ftp service, http service.
Suggested Reading:
11. B. O. Palsson "System Biology – Properties of Reconstructed Networks"
Cambridge University Press
12. Olaf Wolkenhauer. (2010) "System Biology – Dynamic Pathway Modeling"
13. Andres Kriete, Roland Eils (2006) "Computational systems biology"
Academic Press
14. Andrzej K. Konopka (2007) "Systems biology: principles, methods, and concepts" CRC Press/Taylor & Francis
15. Lilia Alberghina (2008) "Systems biology: definitions and perspectives" 2
Edition, Springer
16. Uri Alon (2007) "An introduction to systems biology: design principles of
biological circuits" Chapman & Hall/CRC
17. W. N. Venables, D. M. Smith; "An Introduction to R (Version 2.8.1.)", R
developer Core team.Bergman N. H. (2007),"Comparative genomics"
Volume 2, Humana Press
18. Cantor C.R., Smith C.L., (1993) "Genomics: the science and technology
behind the Human Genome Project" John Wiley and Sons
19. Choudhuri S., Carlson D. B. (2008), "Genomics: fundamentals and
applications" Informa Healthcare
20. Clark M (2000), "Comparative genomics" Springer
Learning Outcome: 1. Describe the principles of systems biology
 Describe the principles of systems biology Describe key cellular processes like transcription, translation, signaling and protein
secretion in a quantitative fashion
3. Use matrix notation to describe the stoichiometry of metabolic networks
4. Describe metabolic network reconstruction based on biochemical and genomic
information
5. Describe how genome-scale metabolic models (GEMs) can be used for analysis of
cellular physiology
6. Describe how constraints and objective functions are underlying principles of flux
balance analysis
7. Describe the use of genome-scale metabolic models in research on human disease
8. Describe how meta-omics data can be analyzed
9. Describe the principles of RNAseq
10. Describe the principles of proteomics
11. Describe the principles of metabolomics

Part B			
Syllabus Prescribed for 2023	Year PG.	Programme	
Programme M.Sc. Bioinformatics		. Bioinformatics	
Semester III			
Code of the Course Subject	Title of the Course/ Subject	No. of periods/	
week			
DSC III.3	Parasite Bioinformatics	03	
Cos :			
2. Knowledge of some p andman (Zoonotic dise	 General concept of parasitology. Knowledge of some parasitic diseases that could be transmitted between animals andman (Zoonotic diseases). Knowledge how to protect man and domestic animals from parasites and 		
 theirtreatment. 4. Basic knowledge of pathostparasite relationshi 5. Knowledge of different theirmorphology, biology 	arasitism, the different biological inter ps. nt parasitic examples from all phyla (ogy, life cycles, diagnosis, treatment &	r-relationships and the Protozoa & Metazoa), control.	
	h awareness of these parasitic diseases.		
Unit-I : (Introduction to Parasitic Diseases)	Biology of Parasites - Life Cycle, Inf distribution of strains (Mala Trypanosoma, Filariasis), Role of bioi monitoring.	aria, Leishmaniasis,	
Unit-II : (Introduction to Parasitic Diseases)	Parasite Genome and Proteome ENSEMBL, PlasmoDB), Vectors of vectors; Giardiasis , Sleeping sick Parasite-specific genes/ gene produc genes, genes essential for survival), R	parasites – Biology of ness, Chagas disease, ts (e.g. house-keeping	
Unit-III : (Techniques to study Parasitic Diseases)	Full Genome Comparison, Gene Predi prediction, Protein sequence comp Protein structure comparison and ana Proteomics Data Analysis, Structural	iction, Signal sequence parison and analysis, lysis, Micro Array and	
Unit-IV : (Introduction to Host-parasite interaction)	Host-parasite interaction: Recognitio of different pathogens like bacteria a and plant host cells; alteration of 1 pathogens, virus-induced cell trans induced diseases in animals and plan both normal and abnormal cells.	nd viruses into animal host cell behavior by sformation, pathogen-	
Unit-V : (Introduction to Host-parasite interaction)	Host-Parasite and Host-Vector-F Pathway databases (KEGG, REACTOME), Multi-Drug Resistan MDR: genomic, molecular, cellular, responsible for MDR, Approaches to for parasite, Challenges and oppo	BioCyc, Pathguide, nce - Mechanism of Identification of genes novel drug discovery	

resiss Unit-VI : (Parasite Immu immunology) MHC infect and I group vacci vacci	lopment, Plant Parasites and diseases - Disease tance genes of plants, Plant-pathogen interactions. unity to infection Antigen processing and presentation,		
Unit-VI : (Parasite Immu immunology) MHC infec and I group vacci vacci 1. Bush, A. O., Fernandez, J. C.	* * *		
immunology) MHC infec and l group vacci vacci 1. Bush, A. O., Fernandez, J. C.			
and l group vacci vacci 1. Bush, A. O., Fernandez, J. C.	MHC, complement system.Bacterial, viral, protozoal and parasitic		
group vacci vacci 1. Bush, A. O., Fernandez, J. C.	infections with reference to (Diphtheria, influenza virus, malaria		
vacci vacci vacci 1. Bush, A. O., Fernandez, J. C.	and helminthes) with specific representative examples of each		
vacci S 1. Bush, A. O., Fernandez, J. C.	group. Vaccines - Active and passive immunization, DNA		
S 1. Bush, A. O., Fernandez, J. C.	vaccines, multivalent subunit vaccines, synthetic peptide		
1. Bush, A. O., Fernandez, J. C.			
	Suggested Reading:		
University Press, 2001.	1. Bush, A. O., Fernandez, J. C., Esch, G.W. & Seed, R. J., "Parasitism", Cambridge		
	University Press, 2001.		
2. Melville, S.E., "Parasite genomics protocols", New Jersey. Humana Press, 2004.			
3. Latey, A.N, Pune, "A modern textbook of Parasitology", Narendra prakashan,			
1991.			
4. Wyler, D.J. "Modern parasite biology: cellular immunological and molecular			
aspects", Ed., 1990.			
Learning Outcome:			
1. Identify parasitism, parasites and their examples.			
2. Describe parasitic diseases and modes of diagnosis.			
 3. Trace control of parasitic infections. 			
4. Understand host-parasite relationship.			

ELECTIVE OPTIONS FOR NEP-20

Part B		
Syllabus Prescribed for 2023	Year	PG. Programme
Programme M.Sc. Bioinformatics		M.Sc. Bioinformatics
Semester III		
Code of the Course Subject	Title of the Course/ Subject	No. of periods/ week
DSE III	Bio-Programming – I	03

Cos:

- 14. Student would know about the properties of DNA, RNA, and proteins, the relationships amongthese molecules, and some biological questions that have puzzled researchers.
- 15. Student would know how to convert a biological question into a computational problem that can be solved using computers.
- 16. Student would know how to read and understand solutions to computational problems, which willbe formalized as a series of tasks (an algorithm).

17. Student would learn about general approaches for solving computational problems, and will be able to apply these approaches to newproblems encounter.

Unit-I : (Introduction to	Introduction to PERL, History and uses, PERL Basics, Data		
PERL)	types, Basic Operators, Control Statements: if, if else, if elsif		
	else, Loops: do, while, until, for, foreach, labels, lists,		
Arrays and associative arrays.			
Unit-II : (Introduction to	Pattern matching: Regular expressions, Subroutines and		
PERL)	functions: structure and invocations, scope Files and I/O:		
	file handles, opening, closing, reading and writing, formats, manipulating files, Perl Modules: CPAN, Bioperl, obtaining		
	and installing, Object oriented PERL		
Unit-III : (Introduction to	DBM Databases and DBM Hashes, Design of DBI, DBI		
ODBC)	Methods, DBI Environment Variables, DBD Interface		
	Modules, Fixed Length Random-Access Databases,		
	Variable-Length Databases, Win32 Database Interface, Perl		
	Graphics, Using the GD.pm graphics lib		
Unit-IV : (Introduction to	Basics structure of HTML, Basics HTML TAGS, URL		
HTML and CGI)	Encoding, CGI Environment Variables, Handling forms,		
	Accessing form Input, Extra Path Information, CGI.pm		
	Module, Passing Parameters via CGI, Less Typing, Sever		
	Side Includes, Debugging CGI programs, Stepping through		
	programs, Breakpoints, Line Action		
Unit-V :	HTML Tag List, HTML Attributes, Global Attributes,		
(HTML References Tags)	Browser Support, Events, Colors, Canvas, Audio/Video,		
	Doctypes, Character Sets, URL Encode, Lang Codes,		
Unit-VI : (NET	Messages, Methods. Event driven programming, History of VB.Net, Features of		
Programing)	VB.Net, Architecture of VB.Net [.Net server, framework,		
i i ogi anning)	services etc.]. 1.2 Net Framework: framework components,		
	classes, CLR, VB.Net IDE, VB.Net: Variables, Keywords,		
	constants, Data types, Conditional statements, looping		
	statements, case control statements.		
12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Suggested Reading:		
	004) "Perl for Bioinformatics" Arun Jagota		
	14. D. Curtis Jamison (2003) "Perl programming for biologists" Wiley- IEEE		
15. D. Curtis Jamison (2008) "Perl Programming For Bioinformatics &			
e	Biologists" Wiley-India		
	ll (2003) "Mastering Perl for bioinformatics" O'Reilly		
Media, Inc			
17. Jules J Berman (2008) "Perl: The Programming Language" Jones & Bartlett			
Learning			
	rartz, Tom Phoenix, Brian D. Foy (2008) "Learning Perl"		
O'Reilly Media	-		
	as (2005) "Bioinformatics: A Modern Approach" PHI		
Learning Pvt. L			
Learning Outo			
1. Basic Applications of C	Computer; Components of ComputerSystem.		

- 2. Concept of Internet; WWW and Web Browsers; SearchEngines
- 3. Data analysis by different computational techniques
- 4. Concepts of computer programming languages like C, JAVA helps in solving different complex problem in biology or data analysis
- 5. Writing scripting for different data analysis
- 6. Command line scripting in DOS and LINUX
- 7. Writing script in R programming to solve biological problem.

Syllabus Prescribed for 2023 Programme: M. Sc. Bioinfor	0	
Semester 1 Code of the	Title of the Course/Subject	(No. of Periods/Week)
Course/Subject	(Laboratory/Practical/practicu m/hands-on/Activity)	
Practical VII	Practical Based on DSC I.3 & II.3	04

CO:

- 1. Fundamentals of Computer, Basic Applications of Computer; Components of Computer System.
- 2. Concept of Computing, Data and Information
- 3. Basics of Operating System; Popular Operating Systems(Windows, Linux, DOS);
- 4. Data structure and its relevance to biological science
- 5. Communication using the Internet: Basic of Computer networks; LAN, MAN, WAN;
- 6. Concept of Internet; WWW and Web Browsers; Search Engines; Understanding URL
- 7. Design & Structure of biological databases
- 8. Introduction to PERL as scripting language; variables; Array; Initialization and manipulation
- 9. Arithmetic and logical operators; Conditional statement and Loops; Regular Expressions; Function and subroutines
- 10. Application of PERL in Bioinformatics; concatenating DNA fragments; DNA to RNA; Reading protein Files; Finding motifs; ORFs; DNA to protein

* List of Practical/Laboratory Experiments/Activities etc.

1	Microbial Database
2	MLVA
3	HBMMD
4	DSMZ
5	RIDOM
6	GPMS

List of Practical's based on Advance Research Methodology

- 1. Basics of drug development
- 2. Drug absorption, distribution, metabolism and excretion
- 3. Drug metabolism and transporter pathways, Pharmacokinetic modeling and analysis,

- 4. Cellular and molecular mechanism of drug action
- 5. Pharmacovigilance, Adverse drug reactions, Drug Interactions

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I Bioinformatics, Semester- III (NEP-20)

PRACTICAL VII:- (Advance Research Methodology and System Biology)

TIME:	-6 Hrs.	Maximum Marks: -50 + 50 = 1	00
Q.1.	Perform Major Experiment in Advance Research	Methodology. 15	
Q.2.	Perform Minor Experiment in Advance Research	Methodology. 10	
Q.3.	Perform Major Experiment in System Biology.	15	
Q.4.	Perform Major Experiment in System Biology.	10	
Q.5.	Internal marks: Practical Record (20); Viva voo performance and Activity – Industrial visit report (10)		

Sant Gadge Baba Amravati University, Amravati

Syllabus Prescribed for 2023 Year Programme: M. Sc. Bioinformatics

PG Programme

Semester 1 Code of the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu m/honde.or/Activity)	(No. of Periods/Week)
Practical VIII	m/hands-on/Activity) Practical based on DSC DSC- III.3	04

Parasite Bioinformatics
ICTV database
Parasite Genome and Proteome Databases.
Genome Comparison
Gene Prediction (Parasite)
Signal sequence prediction (Parasite)
Protein sequence comparison and analysis
Protein structure comparison and analysis (from parasite genome)

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- III (NEP-20) Practical VIII Parasite Informatics

Time 6hrs	Marks-25+25=50
Q.1: Major experiment on Parasite Informatics	20 Marks
Q.2: Minor Experiment on Parasite Informatics	05 Marks
Practical Internal Q.3: Viva-Voce Q.4: Practical Record, Attendance and Assignments	10 15

CO:

- 1. Identify parasitism, parasites and their examples
- 2. Describe parasitic diseases and modes of diagnosis. Trace control of parasitic infections.
- 3. Understand host-parasite relationship.

* List of Practical/Laboratory Experiments/Activities etc.

1.	Exercise in Structured Programming: Basic Operators and Control Flow, Basic Perl Data Types,							
	References, Matrices, Complex/Nested Data Structures, Scope (my, local, our),							
	Function/Subroutines, System and User Function, The local Operator, Variable-length Parameter							
	Lists, Notes on Lexical Variable, File handle and File Tests, stat and stat Functions, Formats,							
	Directory Access & Manipulation, Process Management, Formatting Data, System Information							
2.	Exercise in Regular Expressions: Uses of Regular Expressions, Patterns, Single-Character Patterns,							
	Grouping Patterns (Sequence, Multipliers, Parentheses as memory, Alternation) Anchoring Patterns,							
	Precedence, Matching Operators, Ignoring Case, Different Delimiter, Variable Interpolation, Special							
	Read-Only Variables, Substitutions, Split and Join Functions, Dynamic Programming, Approximate							
	String Matching							
3.	Exercise in CGI: URL Encoding, CGI Environment Variables, Handling forms, Accessing form							
	Input, Extra Path Information, CGI.pm Module, Passing Parameters via CGI, Less Typing, Sever							
	Side Includes, Debugging CGI programs, Stepping through programs, Breakpoints, Line Action							
4.	Exercise in CPAN Database Modules: DBM Databases and DBM Hashes, Design of DBI, DBI							
	Methods, DBI Environment Variables, DBD Interface Modules, Fixed Length Random-Access							
	Databases, Variable-Length Databases, Win32 Database Interface, Perl Graphics, Using the GD.pm							
	graphics library							
5.	Exercise in Bioperl: Installing Bioperl, General Bioperl Classes, Sequences (Bio::SeqClass,							
	Sequence Manipulation), features and Location Classes (Extracting CDS), Alignments (AlignIO),							
	Analysis (Blast, Genscan), Databases (Database Classes, Accessing a local database), Implementing							
6.	REBASE Exercise in HTML: Basics structure of HTML, Formatting text with HTML, Adding local and							
0.	remote links, Adding graphics, creating lists in HTML, Creating tables in HTML, Frames, and							
	Forms.							
	Learning Outcome:							
	1. Right use of microscopes.							
	 Identification and description of parasites. 							
	 Using computers and internet. 							
	 Characterize methods of resistance and appropriate treatment 							
	5. or each disease.							
	6. Conducting documentary about some parasites throughout the Kingdom.							

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- III (NEP-20) Practical IX Bioprogramme

Time 6hrs	Marks-25+25=50
Q.1: Major experiment on Bio-Programing	20 Marks
Q.2: Minor Experiment on Bio-Programing	05 Marks
Practical Internal	
Q.3: Viva-Voce	10
Q.4: Practical Record, Attendance and Assignments	15

Scheme of Teaching, Learning & Examination leading to Two Years PG Degree Master of Science in the Programme Bioinformatics following Three Years UG Programme wef 2023-24 Two Years- Four Semesters Master's Degree Programme- NEPv23 with Exit and Entry Option (M.Sc. Part II) Semester IV

S.	Subject	Туре	Subject		Т	eaching	& Learnin	ng Sche	me		Duration								
N.		of Cours	Code								Of Exam								
								-			Hours			mum Marks	6		Mir	nimum Passi	ing
		e		Те	aching Per W	Period eek			Credits			Theo	ry	Prac	ctical	Total Marks			
				L	Т	Р	Total	L/T	Practical	Total		Theory Internal	Theory+ MCQ External	Internal	External	iviar K5	Marks Internal	Marks External	Grade
1	DSC-I.4 Proteomics	Th- Major		4			4	4		4	3	30	70			100	12	28	Р
2	DSC-II.4 IVR-programming	Th- Major		4			4	4		4	3	30	70			100	12	28	Р
3	DSC- III.4 Chemo-informatics	Th- Major		3			3	3		3	3	30	70			100	12	28	Р
4	DSE-IV /MOOC (Elective Options) Molecular Modeling and Drug Designing	Th-		3			3	3		3	3	30	70			100	12	28	Р
																		n Passing arks	
5	DSC-I.4 Laboratory	Pr- Major				2	2		1	1	3			25	25	50	2	25	Р
6	DSC-II.4 Laboratory	Pr- Major				2	2		1	1	3			25	25	50	2	25	Р
7	DSC-III.4 Laboratory	Pr- Major				2	2		1	1	3			25	25	50	2	25	Р
8	DSE-IV Laboratory/MOOC Lab	Pr- Major Electiv e				2	2		1	1	3			25	25	50	2	25	Р
9	Research Project Phase-II	Major			2	8	10	2	4	6	3			75	75	150	7	75	Р

10	Co-curricular Courses: Health and wellness, Yoga Education, Sports and Fitness, Cultural Activities, NSS/NCC, Fine/Applied/Visual/Performing Arts During Semester I, II, III and IV	Generic Optional	90 Hours Cumulatively From Sem I to Sem							
	TOTAL				24			600		

L: Lecture, T: Tutorial, P: Practical/Practicum

Pre-requisite Course mandatory if applicable: Prq, Theory : Th, Practical/Practicum: Pr, Faculty Specific Core: FSC, Discipline Specific Core: DSC, Discipline Specific Elective: DSE, Laboratory: Lab, OJT: On Job Training: Internship/ Apprenticeship; Field projects: FP; RM: Research Methodology; Research Project: RP, Co-curricular Courses: CC

Note: Co-curricular Courses: In addition to the above, CC also include but not limited to Academic activities like paper presentations in conferences, Aavishkar, start-ups, Hackathon, Quiz competitions, Article published, Participation in Summer school/ Winter School / Short term course, Scientific Surveys, Societal Surveys, Field Visits, Study tours, Industrial Visits, online/offline Courses on Yoga (Yoga for IQ development, Yoga for Ego development, Yoga for Anger Management, Yoga for Eyesight Improvement, Yoga for Physical Stamina, Yoga for Stress Management, etc.). These can be completed cumulatively during Semester I, II, III and IV. Its credits and grades will be reflected in semester IV credit grade report.

Part B		
Syllabus Prescrib	ed for 2023 Year	PG. Programme
Programme		M.Sc. Bioinformatics
Semester IV		
Code of the Cour	se Subject Title of the Course/ Subject	ubject No. of periods/
week		y i
DSC I.4	Proteomics	04
	Trottomits	04
which play deals with biological area, the e application first hand s Unit-I : (Introduction to Proteomics) Unit-II : (The Proteome and Proteome technology) Unit-III : (Computational	a significant role in modern systems the qualitative and quantitative and system. This course introduces the b experimental aspects of tools and te is. As a result of this course, the stuc- ccientific understanding of current treer Introduction to Proteomics: Scope problem: Post translational modifi- studying proteins, protein-protein in of proteomics and current research to Introduction of proteome technolo profile); Protein separation technol chromotagraphy, use of affinity c NMR, mass spectroscopy and its use Reverse Proteomics, Protein microan Secondary structure: Basic principle first, second and third generation and	and Application, Complexity of the ication, Phosphorylation, Methods of teractions (Y2H), Practical application echnology, Protein databases. gies; Expression proteomics (express logy - 2D-Gel Electrophoresis, liquid hromatography in; X-ray diffraction, is in protein identification; Forward and rray and it types. es on which the prediction methods of re based; algorithms of Chou Fasman,
Protein Structure Prediction)	Segment overlap, Mathew's correlat Theoretical basis of the methods appropriate prediction approach; bas Modeling; Databases of models; I	ring the accuracy of predictions (Q3, tion coefficient etc.) Tertiary Structure: for structure prediction, choice of ic principles and protocol of Homology Basic principles for fold recognition, les of ab-initio structure prediction and idation methods
Unit-IV : (Comparative Proteomics)	in 3D structure comparison, purpos such as FSSP database, VAST and I Rasmol or SPDBViewer or CHIME, different types of computer represen	assification: classes, folds; the concepts se of structure comparison, algorithms DALI. Visualization of structures using Basic concepts in molecular modeling, tations of molecules, Concepts of force atomic interactions, Protein Sequence d Proteomics
Unit-V : (Advance Proteomics) Unit-VI : (Advance Proteomics)	software, hydrogen bonds, Protein s Protein structure comparison and its Molecular replacement method – Isom heavy atom derivatives - Anomalous dispersion technique - Synchrotron ra determination. Introduction to X-ray importance and applications - Cryo-o Neutron diffraction - NMR- Importance Diffusion: Macromolecular diffusion methods - Light Scattering: Experiment acids - determination of radius of gyrati	algorithms. norphous replacement method - preparing scattering - Multiwave length anomalous adiation and its implications in structure Free Electron Laser technology (XFEL), electron microscopy, Fiber, Powder and e of NMR in Structural Biology, CryoEM - - Ultracentrifugation - density gradient ntal results on some proteins and nucleic on and end to end distance Electrophoresis
	Application of X-ray crystallography in	
	Suggested Readin	g:

- 2. Azuaje F., Dopazo J., (2005) "Data analysis and visualization in genomics and proteomics" John Wiley and Sons
- 3. Dubitzky W. Granzow M. Berrar D (2007) "Fundamentals of data mining in genomics and proteomics"
- 4. Gu Jenny, Bourne P. (2009) "Structural bioinformatics" Wiley- Blackwell
- 5. Kraj A, Silberring J, (2008) "Proteomics: introduction to methods and applications" John Wiley & Sons
- 6. Liebler D.C, (2002), "Introduction to proteomics: tools for the new biology" Humana Press
- 7. Mishra N.C., (2010), "Introduction to Proteomics: Principles and Applications" John Wiley and Sons
- Pennington S.R., Dunn M. J. (2001), "Proteomics: from protein sequence to function" BIOS
- 9. Reinders J, Sickmann A., (2009) "Proteomics: methods and protocols" Humana Press
- 10. Suhai S. (2000) "Genomics and proteomics: functional and computational aspects" Springer
- 11. Veetstra T.D., Yates J.R. (2006) "Proteomics for biological discovery" John Wiley and Sons
- 12. Polanski A., Kimmel M. (2007) "Bioinformatics" Springer Verlag Berlin Heibel berg Learning Outcome

After successfully completing this course, you will have the following competences:

- 1. Practical and theoretical knowledge in proteomics.
- 2. Knowledge about common workflows for the large-scale analysis of proteins.
- 3. Fundamental knowledge about quantification of proteomes.
- 4. Understanding how to identify proteins from mass spectrometry data.
- 5. Able to evaluate MS/MS data including de novo sequencing.
- 6. Insight into the analysis of post-translational modifications and protein-protein interactions.
- 7. On-hands experience with in-gel digestions, LC-ESI and MALDI mass spectrometry and protein identification.

Part B			
Syllabus Prescrib	ed for 2023	Year	PG. Programme
Programme			M.Sc. Bioinformatics
Semester IV			
Code of the Cour	se Subject	Title of the Course/ Subject	No. of periods/
week			
DSC II.4		IVR programming II	04
11. To enable t	the students t ate biologica Basics of Programmin point types objects, A Constructor passing, R Understand	ng, Data types- Variables and A , Operators, Control statements, ssigning object reference va rs, Garbage collection, using ob Retaining objects, Recursion,	and Perl scripts
Unit II : (Introduction to Java)	Inheritance super class Packages a	: Basics, Member access and in constructors, Creating a multile nd Interfaces: Packages, Defir	hheritance. Using super: to call evel hierarchy. The object class ning a package, Understanding ackages, Defining an interface,

	Implementing interfaces, Applying interfaces, Variables in interfaces,						
	Exception Handling: Fundamentals, Exception types, Uncaught exceptions,						
	Using try and catch, Displaying a description of an exception. Multiple catch						
	clauses, Nested statements, throw, throws; Java's built in exceptions,						
Unit III :	Creating own exception subclasses, Using exceptions Introduction to Unix & Linux, History of Unix & Linux, Basic Concepts of						
Unit III : (Introduction to	Operating Systems, Kernel, shell and file system structure, Basic Concepts						
Unix & Linux)	of Linux, Basic Commands of Linux, Advanced Linux Commands,						
Unix & Linux)	Installation of Linux, Interactive Installation, Kickstart Installation,						
	Network based Installation, Startup and Shutdown scripts, Boot						
	Sequence, Kernel Initialization						
Unit IV :	The UNIX Filesystem and Shell Intro: The Shell - Executing commands						
(Introduction to	and command options, Interactive features: job control, history; The UNIX						
Unix & Linux)	file system, File Utilities (cp, mv, rm, etc.), comm, cmp, diff, Editors: vi,						
,	emacs; Processes and Filters: Process Utilities (ps, kill, wait, sleep);						
	Filters: cat, head, tail, sort, uniq; Regular Expressions and Sed: Regular						
	expressions, grep, fgrep, egrep, Sed						
Unit V :	Installing Bio-Java, Symbols, Basic Sequence Manipulation (DNA to RNA,						
(Introduction to	Reverse Complement, motif as regular expression), Translation (DNA to						
Bio-Java)	Protein, Codon to amino acid, Six frame translation), Proteomics (Calculate						
	the mass and pI of a peptide), Sequence I/O (File Formats conversions),						
	Locations and Features (Point Location, Range Location, Feature						
	modifications), BLAST and FASTA (Blast and FastA Parser, extract						
	information from parsed results), User Interfaces.						
Unit VI R-	Introduction to R: What is R? – Why R? – Advantages of R over Other						
Programming	Programming Languages - R Studio: R command Prompt, R script file,						
	comments – Handling Packages in R: Installing a R Package, Few						
	commands to get started: installed. packages(), package Description(),						
	help(), find. package(), library() - Input and Output – Entering Data from						
	keyboard – Printing fewer digits or more digits – Special Values functions :						
	NA, Inf and -inf. R Data Types: Vectors, Lists, Matrices, Arrays, Factors,						
	Data Frame – R - Variables: Variable assignment, Data types of Variable,						
	Finding Variable ls(), Deleting Variables - R Operators: Arithmetic						
	Operators, Relational Operators, Logical Operator, Assignment Operators,						
	Miscellaneous Operators - R Decision Making: if statement, if - else						
	statement, if – else if statement, switch statement – R Loops: repeat loop,						
	while loop, for loop - Loop control statement: break statement, next						
	statement.						
11 Daniamin	Suggested Reading:						
	Cummings and Booch, G. (1994) "Object Oriented Design and ns"; Second edition, Addison Wesley Publishers.						
11	, C.S. (2000) "Computing Concepts with Java 2 Essentials"; Second Edition,						
	y Publishers						
•	P. and Schildt, H. (1999) "Java-2: The complete Reference"; Third Edition,						
-	Ill Publishers.						
	jol J, (2007) "Java for bioinformatics and biomedical application" Springer						
Japan	jer e, (2007) vara for elementation and elementation uppheation optinger						
-	S., Tolliver J.S., Lindblad T, (2005) "JavaTech: an introduction to scientific						
•	cal computing with JAVA" Cambridge University Press						
	16. Srinivas V.R. (2005) "Bioinformatics: A modern Approach" PHI learning Pvt. Ltd						
Learning Outcon							
0	arn the basics of programing						
	ate the necessity for programming in biology						
	ndling biological concepts with C++ and Perl scripts						
	ply programing to analyze genomic sequences						
	derstand Bio-Perl and their application in bioinformatics to handle the						
	nplex data						

Part B								
Syllabus Prescrib	Syllabus Prescribed for 2023 YearPG. Programme							
Programme			M.Sc. Bioinformatics					
Semester IV								
Code of the Cour	se Subject Title	e of the Course/ Sub	ject	No. of periods/				
week								
DSC III.4		Chemo-informatics	5	03				
Cos :								
		sic ligand/structure b						
		ns used in the establi	shed software	to carry out the most				
	ADD project.	proper use of variou	s parameters i	n cheminformatics				
application		proper use of variou	s parameters ll	n enemmormatics				
	1 0	utational tools availa	ble for comput	ter aided drug design				
	2D/3D structural da							
Unit-I :				tion, Basics of Chemo-				
(Introduction to Chemo-				or synthetic polymers, chemical information,				
informatics)				em, Binding database,				
				indexing, proximity				
	searching, 2D an	d 3D structure and	substructure s	earching. Drawing the				
		re: 2D & 3D drawing	g tools (ACD	Chemsketch) Structure				
Unit-II :	optimization.							
(Introduction to				emistry (library design, niques, Representation				
Chemo-				t types of Notations,				
informatics)				(Molecular converter,				
		or). Similarity search		· · · · · · · · · · · · · · · · · · ·				
Unit-III :	•			on, chemical property				
(Introduction to Chemo-	· 1	1		chemistry information, sis, Structure-Activity				
informatics)	•	,		stical methods used in				
	1 /	tification, Molecular	· /					
Unit-IV :	Target Identifica	tion: Molecular Mo	odeling and	Structure Elucidation:				
(Introduction to	•••	- (K), Visualization and				
Chemo- informatics)				y studio), Applications ical Libraries, Virtual				
mormatics		tion of Pharmacologi						
Unit-V :				ocking Studies (Target				
(Introduction to	Selection, Active	site analysis, Liga	nd preparatio	n and conformational				
Chemo-			g, Structure	based design of lead				
informatics)	compounds, Libra	ry docking)						
Unit-VI :	Pharmacophore	- Based Drug I	Design Phar	macophore Modeling				
(Introduction to				2D/3D pharmacophore				
Chemo-				roperties (Absorption,				
informatics)								

	Distribution and Toxicity), Global Properties (Oral Bioavailability and
	Drug-Likeness) (ADME, OSIRIS, and MOLINSPIRATION)
	Suggested Reading:
1	Bajorath J (2004), "Chemoinformatics: Concepts, Methods and Tools for Drug
1.	Discovery" Humana Press
2	Leach A, Gillet V, "An Introduction to Chemoinformatics" Revised edition,
2.	Springer
3.	Gasteiger J. Engel T. "A textbook of Chemoinformatics" Wiley- VCH GmbH &
	Co. KGaA
4.	Bunin B. Siesel B. Guillermo M. "Chemoinformatics: Theory, practice &
	products", Springer
5.	Lavine B. (2005), "Chemometrics and chemoinformatics" American Chemical
	Society
	Casteiger J. and Engel T (2003) "Chemoinformatics" Wiley-VCH
7.	Bunin Barry A. SieselBrian, Morales Guillermo, Bajorath Jürgen.
	Chemoinformatics: Theory, Practice, & Products Publisher:New York, Springer.
	2006. ISBN: 1402050003.
8.	Gasteiger Johann, Engel Thomas. Chemoinformatics: A Textbook. Publisher:
0	WileyVCH; 1st edition. 2003. ISBN: 3527306811.
9.	Leach Andrew R., Valerie J. Gillet. An introduction to chemoinformatics. Publisher: Kluwer academic, 2003. ISBN: 1402013477.
10	. Gasteiger Johann, Handbook of Chemoinformatics: From Data to Knowledge (4
	Volumes), 2003. Publisher: Wiley-VCH. ISBN: 3527306803.
Learning Ou	tcome:
	• To impart knowledge on chemical databases, various advanced
	techniques and tools like docking, QSAR studies etc employed in
	computational drug discovery
	 Introduction about the basic concepts of cheminformatics
	• Explain about various approaches used in the design of pharmacophores
	 Describe about the concepts of SAR & QSAR
	 Explain various techniques used in virtual screening
	• Describe about various techniques used in Structure Based Drug Design

ELECTIVE OPTION FOR NEP-20

Part B		
Syllabus Prescribed for 2022	Year PG	. Programme
Programme	M.S	Sc. Bioinformatics
Semester IV		
Code of the Course Subject	Title of the Course/ Subject	No. of periods/
week		
	cular Modeling and Drug Design	03
Cos:	and Dava Design is starting haved	dans a dani an and tha
	and Drug Design is structure-based	0 0
1 2 1	nacromolecule and small molecule in	
e e	of the molecular modeling tools and	1
	e understanding of macromolecular	
17. The skills required for v	vorking in the pharmaceutical indust	try and for further study in
the areas of molecular s	tructure and interaction.	
Unit-I : (Concepts in	Introduction; Coordinate System;	potential energy surfaces
Molecular Modeling)	molecular graphics; Computer	hardware and software;
0,	Mathematical concepts - introduct	
	& quantum mechanics	
Unit-II : (Molecular		force fields: Bond structure
Mechanics)	and bending angles - electrostati	-
(incentations)	bonded interactions, hydrogen	
	mechanics; Derivatives of mol	
	function; Calculating thermodyna	mic properties using force

	field; Transferability of force field parameters, treatment of						
	delocalized pi system; Force field for metals and inorganic						
	systems – Application of energy minimization						
Unit-III : (Molecular	Molecular Dynamics using simple models; Molecular						
Dynamics Simulation	Dynamics with continuous potentials and at constant						
Methods)	temperature and pressure; Time-dependent properties; Solvent						
	effects in Molecular Dynamics; Conformational changes from						
	Molecular Dynamics simulation. Introduction, Newton's						
	equation of motion, equilibrium point, radial distribution						
	function, pair correlation functions, MD methodology, periodic						
	box, algorithm for time dependence; leapfrog algorithm, Verlet						
	algorithm, Boltzman velocity, time steps, duration of the MD						
	run. Ligand protein interactions using Gromacs.						
Unit-IV : (Molecular	Deriving and using 3D pharmacophore; Molecular Docking;						
Modeling in Drug	Structure based methods to identify lead compounds; de novo						
Discovery)	ligand design; Applications of 3D Database Searching and						
	Docking, Finding new drug targets to treat diseases -						
	Pharmacophore identification - Structure based drug design -						
	Molecular Simulations						
Unit-V : (Structure	QSARs and QSPRs, QSAR Methodology, Various Descriptors						
Activity Relationship)	used in QSARs: Electronic; Topology; Quantum Chemical						
	based Descriptors. Use of Genetic Algorithms, Neural						
	Networks and Principle Components Analysis in the QSAR						
	equations						
Unit-VI : (Structure	Druggable Targets, Macromolecular modeling- Ab initio modeling;						
Activity Relationship)	Phyre 2 server. Homology Modeling; Modeller. Threading; RAPTOR. Validation of the Model – Ramachandran Plot.						
	PROCHECK. Binding site; Q-Site finder, Catalytic site atlas.						
	Molecular docking; ArgusLab, AutoDock, GLIDE. Drug-receptor						
	interaction. Pymol, Rasmol viewer.						
	Suggested Reading:						
21. Andrew R. Lead	h (2001) "Molecular Modeling – Principles and Applications";						
Second Edition,	Prentice Hall, USA						
22. Fenniri, H. (200	0) "Combinatorial Chemistry – A practical approach", Oxford						
University Press	, UK.						
	nd Kerwin, J.F. (1998) "Combinatorial chemistry and molecular						
	discovery"; Wiley-Liss Publishers						
	998) "Strategies for Organic Drug Discovery Synthesis and						
	International Publishers						
	00) "Analytical techniques in Combinatorial Chemistry"; Marcel						
Dekker Publishe	rs						
Learning Outcome:							
This course will be able to demonstrate:							
1. An understanding of the general concepts of macromolecule interactions.							
2. A solid grounding in the mathematics that underpin the methods used.							
3. A working knowledge of the methods and tools used in molecular modelling.							
4. Knowledge of the experimental techniques that support molecular models.							
5. Strong skills in the critical analysis and synthesis of scientific information.							
	6. The ability to conduct independent research, place findings in context and suggest new research ideas.						
	luct an independent research project and how to report research						
data in formats suitable for publication.							

OPTION FOR OTHER STREAM/FACULTY

Part B			
Syllabus Prescribe	d for 2022 Year	PG. P	rogramme
Programme		M.Sc.	Bioinformatics
Semester IV			
Code of the Cours	Subject Title of the Cour	se/ Subject	No. of periods/ week
OEC II	Language for B	ioinformatics	04
Cos :			
		web based applicat	tions specially for biological data
	niliarity CO-2 nd working on world wide web	through implementa	ations Familiarity and Assessment
		biology to implem	nent their programmatic versions
6. Able to des	gn new web pages and web sit		•
7. Able to dev	eloped programs to describe an		
(Language)			n overview of scripting languages, equence analysis. Complexity of
(Lunguage)			ons and applications. Introduction
	to HTML, DHTML, XML	accessing differen	nt objects of the HTML page,
II	Dynamic page generation, Ca		
Unit-II: (Language)			ts of the document object model, g using JavaScript; data types and
(Lungunge)			plementations, XML: DTD, XML
			ta from database in XML format;
II	various bio based versions of		
Unit III: (Language)	mathematical expressions		types, array and string handling, in PHP, PHP programming
(Lunguage)	(implementation of object mo		
Unit-VI	8 8 1	U	s: Storing a DNA sequence,
:(Language)	· •		s and Scalar list, Strings to Array,
Unit-V	Operations on Strings, Subro Calling modules, Hashes, Dat	a Structures in Perl.	, Reading files and writing output
:(Language)	formats, Regular expressions	and Perl Operations	, Parsing genbank, PDB, BLAST,
	and other file formats, Object-oriented programming, Complex Data Structures,		
Unit-VI	Relational Databases.	1	I lain a tha a survey and intermediate
:(Language)			Using the command interpreter prences. Introduction to git and
·(gg.)	±	•	ion and use, arguments, block
			port Conditionals and Boolean
	expressions	-	
	1 0 1		poping and control flow. String
	e .		and Mutability. List and Dict
	-	-	passing, Lambda, Multiple ulating built-in types, Iterators
	· • •		U I
and Generators, Decorators, Context Managers, Regular expression. Suggested Reading:			
4. Beginning Perl for Bioinformatics By James Tisdall, O'Reilly Media (2001)			
5. Mastering Perl for Bioinformatics By James Tisdall, O'Reilly Media (2003)			
 Python For Bioinformatics By Sebastian Bassi, Chapman and Hall (2010) HTML the complete reference, 2004, TMH. 			
8. Beginning PHP and Professional PHP, 2009, Wrox, Wiley Dreamtech.			
9. JavaScript: The complete Reference, 2004, TMH.			
Learning Outcome		bility to identify	formulate and solve computer
	emsengineering problems.	ionity to identify,	ionnulate and solve computer
2. Stu	dents will demonstrate the al	• •	d experiment both in hardware
	software, analyze and interpret		
	dents will demonstrate an a ditions, as per the needs and spec	• •	the given problems and design
	dents will develop confidence f		nd ability for lifelong learning
			ng in competitive examinations.

Syllabus Prescribed for 2023 Year Programme: M. Sc. Bioinformatics		PG Programme	
Semester 1 Code of the	Title of the Course/Subject	(No. of Periods/Week)	
Course/Subject	(Laboratory/Practical/practicu m/hands-on/Activity)		
Practical VII	Practical Based on DSC I.4 & II.4	04	
D			

Proteomics

1	Protein Sequence Databases	
2	Protein Structure Databases	
3	Protein Sequence Analysis by BioEdit	
4	Advanced Visualization Software and 3D representations	
5	Coordinate generations and inter-conversions	
6	Secondary Structure Prediction	
7	GORIV	
8	Online Secondary structure prediction tools	
9	Fold Recognition, ab initio (Rosetta Server)	
10	Homology based comparative protein modeling	
11	Energy minimizations	
12	Validation of models	
a.	WHATIF	
b.	PROSA	
c.	PROCHECK	
d.	VERIFY 3D	
e.	RAMPAGE	
f.	Protein Structure Alignment	
g.	Protein Structure Comparison	
<u>ь</u> . h.	Modeller9v7	
i.	Geno-3D	
j.	Discovery Studio Server	
J.	Learning Outcome:	
	1. Bioinformatics – an Overview, Definition and	
	History.Information Networks –Internet inBioinformatics,	
	Evolution of Bioinformatics – Scope –Potentials of	
	Bioinformatics, Human Genome Project	
	2. Introduction to Biological Databases: NCBI, EMBL,	
	PIR,SWISS-Prot, PubChem	
	3. Compound, KEGG-Pathway, ChEMBL,	
	BindingDB.Analysis of Three Dimensional Structures of	
	Proteins, RCSB-PDB. Primary and Secondary database	
	4. Various file formats for bio-molecular sequences:	
	genbank,fasta, gcg, msf, nbrf-pir etc.	
	5. Basic concepts of sequence similarity, identity	
	andhomology, definitions of homologues,	
	orthologues, paralogues.	
	6. Scoring matrices: basic concept of a scoring matrix,	
	PAMand BLOSUM series	

IVR Pregaming-II

24	Packages and Interfaces, Exception, Multithreading
25	Streams and I/O, Using Native Methods and Libraries
26	Java Programming Tools, Working with Data Structures
27	Sequence Analysis Packages - EMBOSS, NCBI Tool Kit
28	Analysis of Biological Sequences
a.	Basic Blast
b.	Specialized Blast

SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI PRACTICAL EXAMINATION M.Sc. I Bioinformatics, Semester- IV (NEP-20)

PRACTICAL X:- (Proteomics and IVR Programing)

TIME: -6 Hrs.		Maximum Marks: -50 + 50 = 100	
Q.1.	Perform Major Experiment in Cheminformatics.	15	
Q.2.	Perform Minor Experiment in Cheminformatics.	10	
Q.3.	Perform Major Experiment in IVR Programing.	15	
Q.4.	Perform Major Experiment in IVR Programing.	10	
Q.5. performa	Internal marks: Practical Record (20); Viva voc nce and Activity – Industrial visit report /Monogra		

Sant Gadge Baba Amravati University, Amravati

Syllabus Prescribed for 2022 Programme: M. Sc. Bioinform		PG Programme	
Semester 1 Code of the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu m/hands-on/Activity)	(No. of Periods/Week)	
Practical XI Cheminformatics:	Practical Based on DSC III.4	02	

10	Chemo-informatics databases
11	Chemical structure representation
12	Smiles - Simplified Molecular Input Line Entry System
13	Molecular Dimension Limited (MDL) file format for chemical connectivity
14	Chemical Structure similarity
15	Fingerprints and search for substructure similarity using expasy
16	Generation of 3D structures from 2D representations
17	3D structure similarity
18	Elements of molecular descriptors
19	Writing Pseudo Codes
20	Working with Objects, Arrays, Conditionals and Loops
21	Creating Classes and Applications in Java
22	Managing Simple Events and Interactivity
23	Creating User Interfaces with AWT, Modifiers

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- IV (NEP-20) **Practical IX** Bioprogramme

Time 6hrs	Marks-25+25=50
Q.1: Major experiment on Chemoinformatic	20 Marks
Q.2: Minor Experiment on Chemoinformatic	05 Marks
Practical Internal	
Q.3: Viva-Voce	10
Q.4: Practical Record, Attendance and Assignments	15

Syllabus Prescribed for 2022 Programme: M. Sc. Bioinfor		PG Programme	
Semester 1 Code of the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu	(No. of Periods/Week)	
Practical XII	m/hands-on/Activity) Practical Based on DSC III.4	02	

CO:

- 1. To develop logical understanding of the subject.
- 2. To create the ability to model, solve and interpret Molecular Modelling, Drug Design, Chemo-informatics, Bio-Programming and Research Methodology, IPR and Bioethics problems.
- 3. To provide an overview of functions of complex variable which helps in solvingmany biological problems

* List of Practical/Laboratory Experiments/Activities etc.

Molecular Modelling, Drug Design

		1 Binding site identification
		2 Pharmacophore identification
		3 Rigid body docking using Autodock and ADT
		4 Molecular dynamics simulations using Gromacs
		5 Visual Molecular Dynamics (VMD)
		6 Advance Visualization with (Discovery Studio)
		7 Receptor and Ligand Optimization
		8 Conformational Analysis
		9 Chemo-informatics Software
a.		AMBER
b.		ArgusLab 3.0
c.		BABEL
d.		Chemos
e.		VEGA
f.		PubChem
g.		ChemSketch
Lea	arniı	ng Outcome:
	1.	Research, inquiry and analytical thinking abilities
	2.	The capability and motivation for intellectual development
	3.	Ethical, social and professional understanding
	4.	Effective research communication
	5.	Teamwork, collaborative and management skills
	6.	be able to describe the process of drug discovery and development
	7.	be able to discuss the challenges faced in each step of the drug
		discovery process
	8.	have gained a basic knowledge of computational methods used in drug
		discovery

Sant Gadge Baba Amravati University, Amravati Practical Examination Bioinformatics Semester- IV (NEP-20) Practical XII Molecular Modelling, Drug Design

Time 6hrs

Marks-25+25=50

20 Marks

Q.1: Major experiment on Molecular Modeling

Q.2: Minor Experiment on Drug Designing	05 Marks
Practical Internal Q.3: Viva-Voce Q.4: Practical Record, Attendance and Assignments	10 15

Syllabus Prescribed for 2023 Year Programme: M. Sc. Bioinformatics		PG Programme
Semester 1 Code of the Course/Subject	Title of the Course/Subject (Laboratory/Practical/practicu	(No. of Periods/Week)
Practical XIII	m/hands-on/Activity) Practical Based on Project Work	10

CO:

- 1. Identify and discuss the role and importance of research in the bioinformatics.
- 2. Identify and discuss the issues and concepts salient to the research process.
- 3. Identify and discuss the complex issues inherent in selecting a research problem, selecting an appropriate research design, and implementing a research project.
- 4. Identify and discuss the concepts and procedures of sampling, data collection, analysis and reporting.

Learning Outcome:

- 1. Explain key research concepts and issues
- Read, comprehend, and explain research articles in their academic discipline.
 Able to formulate new research problem.